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Abstract: We analyze the magnitude of the radiation pressure and elec-
trostrictive stresses exerted by light confined inside GaAs semiconductor
WGM optomechanical disk resonators, through analytical and numerical
means, and find the electrostrictive force to be of prime importance.
We investigate the geometric and photoelastic optomechanical coupling
resulting respectively from the deformation of the disk boundary and from
the strain-induced refractive index changes in the material, for various
mechanical modes of the disks. Photoelastic optomechanical coupling is
shown to be a predominant coupling mechanism for certain disk dimensions
and mechanical modes, leading to total coupling g,, and gg reaching
respectively 3 THz/nm and 4 MHz. Finally, we point towards ways to
maximize the photoelastic coupling in GaAs disk resonators, and we
provide some upper bounds for its value in various geometries.
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1. Introduction

The field of optomechanics [1, 2, 3] offers a rich array of applications spanning mechanical
ground-state optical cooling [4, 5], force and acceleration sensing [6, [7], wavelength conver-
sion [8, 9] and all-optical tuning of photonic circuits [[10,!11}[12]. In this context, semiconductor
optomechanical disk resonators [[13] (14} [15] [16] are of particular interest due to their high op-
tical quality factors (Q) and ability to confine both optical and mechanical energy in a reduced
(~ A%) interaction volume, thus providing very strong optomechanical coupling. Alongside
Silicon (Si), GaAs is a platform of great potential for integrated photonics, as it allows for the
integration of high optical Q and GHz high mechanical Q resonators [[17, [18] with strong op-
tomechanical coupling [[19] directly on-chip [20]]. The GaAs platform furthermore enables the
addition of electrically driven optically active elements, as well as the inclusion of quantum
dots or quantum wells [21]] offering novel hybrid optomechanical coupling schemes [22].

The optomechanical resonators described in this work are composed of a micrometer-sized
GaAs disk, isolated from the sample substrate atop an Aluminum Gallium Arsenide (AlGaAs)
pedestal (Fig[T[(a)). The GaAs disk supports high Q optical WGMs located on the periphery
of the disk, which are identified by their radial order p and azimuthal number m [[13| 23]]. The
disk also supports a variety of in- and out-of-plane mechanical modes [13]]. A radial contour
mechanical mode is schematically depicted in Fig.[T(b).

The photons confined inside the semiconductor disk exert two different stresses which will be
detailed in the following: a radiation pressure “pushing the walls of the optical cavity apart” and
an electrostrictive stress linked to the material’s photoelasticity. Recently, Rakich et al. showed
that for certain geometries of straight silicon photonic waveguides the electrostrictive stress
could be commensurate with the radiation pressure stress commonly studied in optomechanics
[24}[25]]. In this paper we study the magnitude of these optical stresses in GaAs optomechanical
disk resonators. We investigate the associated geometric and photoelastic optomechanical cou-
pling strengths, resulting respectively from the deformation of the disk boundary and from the
strain-induced refractive index changes in the material, for various mechanical modes of the
disk. We propose different computational methods, from analytical models leading to useful
scaling formula, to full numerical approaches providing precise values of the coupling strength
as a function of the mechanical mode and of the disk radius. For certain mechanical modes,
photoelasticity is a predominant optomechanical coupling mechanism, resulting in total cou-
pling strengths g,,, and gy that reach respectively 3 THz/nm and 4 MHz. Finally we propose
some simple rules to maximize the value of this coupling.

1.1.  Optomechanical coupling

The disk resonator is described by the standard optomechanical Hamiltonian A describing an
optical field coupled to a mechanical resonator [3]]:

H = haxa'a+nQuyb'b —nhgoa'a (b' +b) (1)

with @y and Q; respectively the optical and mechanical angular resonance frequency and 7
the reduced Planck constant. a* (IA)T) and 4 (13) are respectively the photon (phonon) creation
and annihilation operators. The optomechanical interaction can be defined in terms of the op-
tomechanical coupling strength g,, = — %’0, representing the shift in the optical resonance fre-
quency for a given mechanical displacement dx or, in a complementary way, by go = gomXzpF,
which represents the optical frequency shift for a mechanical displacement equal to the zero
point fluctuations xzpr. For completeness, we will quote both g,,, and gg in this work, fixing x
to be the maximum amplitude of displacement of the resonator [13].
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Fig. 1. (a) Schematic side-view of a GaAs disk of thickness 4 (blue), positioned atop an
AlGaAs pedestal (grey), along with the cylindrical coordinates used throughout this work.
(b) Top view of a GaAs disk of radius R (blue). The dashed green and red lines represent
the radial deformation of the disk by a mechanical mode. (c¢) Schematic view of an optical
cavity composed of n=2, 4 or 6 mirrors, and the associated grazing angles.

1.2. Mechanisms of optomechanical coupling

A confined optical wave in the disk is only resonant provided it closes upon itself in phase after
a round-trip, respecting the condition: 27negR ~ mA, with neg the WGM effective index, A
the optical freespace wavelength, R the disk radius and m € N. From this it appears that the
resonance wavelength is modified by a small mechanical displacement dx that changes the cav-
ity radius R. But this small displacement, by modifying the whole crystal lattice, also changes
the refractive index via the photoelastic effect and, through this, the resonance wavelength of
the WGM. The total g,,, can be split into two independent contributions depending on each of
these two mechanisms:

_ _doo(Re)  damydR  Jduwyde )
Som="""4x T 9R dx Je dx
~— ~——

geometricgﬁf,f photoelasticgf,’,fl

where € is the material’s permittivity, which is no longer necessarily isotropic nor homogeneous
inside the disk under stress. The photoelastic contribution gy, is obviously unique to resonators
where light is confined inside matter, like semiconductor disks, silica toroids or spheres and
photonic crystal slabs, and would not appear in an empty Fabry-Perot optomechanical cavity.
For this reason, it has been little considered in the early optomechanics literature [26] 28l
29].

Note that assuming a purely radial mechanical displacement with maximal amplitude exactly
at the periphery of the disk, and assuming the separability of the in-plane and out-of-plane
components of the electric field, the geometric optomechanical coupling in a disk resonator of

geo

radius R takes the exact simple form g3, = @y /R [13].

2. Radiation pressure in an optomechanical disk resonator

We first calculate the radiation pressure exerted by photons confined by total internal reflection
inside a circular disk resonator in two different ways: 1) through simple analytical energy and



momentum conservation arguments; 2) by 3D Finite Element Method (FEM) computations of
the Maxwell Stress Tensor (MST). Our analytical approach provides original helpful formula
for whispering gallery optomechanics. While both approaches fittingly yield consistent results,
each provides specific insights into the radiation pressure mechanism.

2.1. Analytical approach
2.1.1. Energy conservation argument

The stored electromagnetic energy in the closed resonator is given by:
E = N,phay 3)

with N, the number of stored photons in the resonator and @y the photon’s angular frequency.
A small mechanical displacement of the disk Ax leads to a change in the photon angular fre-
quency Aayp and stored energy AE = N,,iAay. Therefore the force associated to this work
reads: AE A
)

F= _E = _Nphhg = Nphhgom 4
Using Eq.[2} we split the total force F into two distinct contributions, linked to radiation pressure
F,p and electrostriction F:

Frp = Nphhg‘gw and Fes = phhgf)’; (5)

om

2.1.2. Momentum conservation argument

Let us consider the radiation pressure exerted on the outer boundary of a disk resonator by a
confined photon, through momentum conservation arguments. In free space, the momentum
associated with a photon of wavelength A is fikg, with ko = 27 /A the free space wavenum-
ber. When this photon impinges on a rigid mirror with orthogonal incidence, and is perfectly
reflected, conservation of momentum dictates that the mirror receives 2iiky momentum. We
now wish to describe how much momentum is transferred to a circular resonator by a pho-
ton confined by total internal reflection, as this photon performs a round-trip. Using ray optics
considerations, a photon confined inside a regular cavity with n sidewalls will strike the side-
walls n times per round-trip at an angle of 7/n, each time transferring radially a momentum
27k sin (7 /n) (Fig. [1|(c)). The radial momentum transfer as a photon completes one round trip
is the limit:

2hk}i_r>£10n sin(z/n) = 2mhk (6)

where k is used instead of ky as we now consider the case of a photon confined inside a dielectric
medium. Note the difference with the often encountered 4/k expression stemming from the
Fabry-Perot case. The associated radial force per photon is the momentum transfer per round-
trip (Eq.[6) divided by the cavity round-trip time 7,; and is written for a disk of radius R:

dP 2rhk hkc

B E - Zﬂ:Rl’leff/C - NesfR
———

Trt

(7

with ¢ the speed of light in vacuum. Provided we write the photon momentum 7k in a material
of refractive index neg as ik = kg nege (Minkowski formulation for the photon momentum in a
dielectric [30]]) and use the geometrical expression g5, = @y /R for a purely radial displacement
of the disk, the radial force F,, exerted by N, photons takes the simple form:

h k() c

Frp :NphT :Nphhggg) 3



which is consistent with what was obtained through energy conservation (Eq. ). The radiation
pressure Py, exerted on the disk resonator’s vertical outer boundary of surface S = 2R is:

hikoc fic

Fro = Frp S = Now > ez, = Vot 20k

€))

The - dependency in Eq.@illustrates the benefit of using small-diameter thin disk resonators.

2
Parameter Name  Unit Value
Disk weight Pisi N 52107
Radiation pressure force per photon  F,, /N, N 151071
Radiation pressure per photon Pry/Nyy  Pa 7.5-1072

Table 1. Radiation pressure values for a 1 pm radius, 320 nm thick GaAs disk resonator
and A9=1.32 um wavelength light.

Since both force and pressure exerted by the stored photons are independent of the refractive
index of the resonator material, the benefit of using high refractive index materials appears only
through the reduced disk radii feasible before incurring significant bending losses. Numerical
estimates of F;, and P, for a 1 yum radius disk are provided in Table E} The remarkable op-
tomechanical properties of these small resonators are highlighted by the fact that the radiation
force F,, exerted on the disk’s outer boundary by a single photon is larger than the disk’s own
weight.

2.2.  Numerical approach

In this section we estimate the magnitude of the radial radiation pressure per confined photon
by computing the spatially dependent Maxwell stress tensor (MST) [31]. In a dielectric medium
of relative permittivity & (r,z) and permeability y,, the ij components of the MST are given
by:

1 1
Tij = & &(r,2) {EiEj ~3 0;j E|2} + Mo Hy {HiHj ~3 0;j |H|2} (10)

Here gy = 8.85- 1072 F-m~! and pp = 47 - 10~ H-m™~! are the vacuum permittivity and per-
meability, J;; is Kronecker’s delta and E; (H;) is the ith electric (magnetic) field component. In
the following we will take &, (r,z) = n? € R and u=1 inside the GaAs, and &,=,=1 in the sur-
rounding air. With the choice of notations of Eq. . the radiation pressure induced stress Gg’
(applied on the face normal to the i direction along the j direction) is expressed as a function
of the MST element T;; as Girjp = —T;;. While this approach allows for computing both normal
(0;;) and shear (o0;; with i # j) stresses, in the following we focus only on normal stresses, as
these are the ones producing work when coupled to the radial displacement of a mechanical
Radial Breathing Mode (RBM). Since the disk cannot respond mechanically to rapidly varying
forces at optical frequencies (10'* Hz range), we compute the time averaged value of the radial
stress over an optical cycle.

To calculate the radial radiation pressure due to a photon confined in the resonator in a
specific WGM, we first perform a FEM simulation of the desired WGM. (Throughout this
paper -unless mentioned otherwise- we will be considering Transverse Electric (TE) WGMs,
with radial order p=1 and a resonance wavelength Ay ~ 1.3um). This simulation provides the
electric and magnetic field components needed to compute Eq. The main field components
are plotted in Figure a, b, c, d, and e. Next, the value of the time-averaged normal radial stress
o,f = —T,, is calculated at every point in space along the rz cross-section (see Fig. [2} f). The
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Fig. 2. 2D axi-symmetric FEM modeling of the normal radial ‘radiation pressure’ stress
o,7 in a 320 nm thick and 1 um radius GaAs WGM disk resonator. The considered WGM
is a (p=1, m=10). The solid lines show the boundary of the two computational domains:
the GaAs disk and the surrounding air. 2D axi-symmetric cross sections are shown here,
the whole disk is obtained by revolving around the z axial symmetry axis (dashed red line).
The AlGaAs pedestal, being sufficiently remote from the optical field, is not included in
the simulation. Images (a) through (e) show the computed electric and magnetic field cross-
sections, normalized such that the total electromagnetic energy in the resonator is equal to
the energy of one photon. (a) E, (b) Eg (c) E; (d) H; (e) H,. Since the simulated WGM
is TE, the in-plane electric field and out-of-plane magnetic field components E,, Eg and
H, are dominant. (f) Normal radial stress exerted by a confined photon o,/ . The optically
induced stress is largest near the outer boundary of the disk resonator, where most of the
electromagnetic energy is located.

normal radial stress is largest near the outer edge of the disk, where the light is confined. From
the local stress we can infer a local volume force (force per unit volume) .% via the relation:

y]}_’p = —8,-6,7’ = 8i7",-j (11)

The spatial distribution of the radiation volume force .%,” is maximal right at the discontinuous
dielectric interface (at r=1 um), lending some degree of support to the previously used image of
the photon as a particle exerting a force as it bounces off the resonator sidewalls. In this image,
the photon is “pushing on the boundary”. In order to quantitatively compare the results of the
analytical approach, which considers a radial force applied to the disk boundary, with the MST
approach, which provides radial, azimuthal and axial stresses distributed throughout the disk
resonator, the associated g, must be computed. This will be done in section 4]

3. Electrostriction in an optomechanical disk resonator

Electrostriction is a mechanism whereby electric fields induce strain within a material. It differs
from piezoelectricity in that the induced strain is proportional to the square of the electric
field, and not to the electric field. Since the electric fields we consider are rapidly oscillating at
optical frequencies, the time averaged piezoelectric strain shall be zero, while the time averaged
electrostrictive strain contribution remains. Electrostrictive stresses scale with the fourth power
of the dielectric refractive index, making them of significant importance for high refractive
index materials such as silicon and GaAs (for which n > 3.3 at telecom wavelengths) [24]]. The
electrostrictively induced stress can be expressed in terms of the material photoelastic tensor
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Fig. 3. (a) Illustration of the link between photoelasticity and electrostriction. A strain leads
to change in refractive index (photoelasticity) which itself leads to a change in the stored
electric energy. Electrostriction is the converse mechanism (red arrow), whereby electric
fields (stored energy) induce strain in the material. (b) Schematic illustrating the direction
of electrostrictive and radiation pressure forces acting on a GaAs disk resonator due to
photons confined in a WGM (black arrows), and represented in the cross section plane over
which the stress and volume force are plotted in Figs.[2]and i}

Dijki [32]], which links a material strain S;; to a change in the material’s inverse dielectric tensor

1.
g

g5 (Su) = ;' +4(e;") =&+ piwiSu (12)

The photoelastic tensor has 3* = 81 elements, that reduce to only 3 independent coefficients
for cubic crystals such as GaAs [33]]. These three parameters are p11, p12 and p44, written here
in contracted notation, where 11— 1; 22 — 2; 33 — 3; 23,32 — 4; 31, 13 — 5; 12,21 — 6.
Using this definition, Eq. [[3]links the electrostrictively induced stresses 0 to the electric field
components in the following way [32]:

o pu p2 p2 0 0 0 E?

Ogp pi2 pu p2 0 0 O E}

oz 1o 4lp2 p2 o pu O 0 0 EZ2
op=05 = 2% [0 0 0 pu o0 0||BE| P
ol =05 0 0 0 0 pu O E.E,
ol =04 0 0 0 0 0  pau E.Eq

photoelastic tensor

The value of the three photoelastic coefficients for GaAs are provided in Table |2| The rela-
tion between electrostriction and photoelasticity is seen by considering a disk resonator sud-
denly subject to strain. The strain leads to a change in the material’s permittivity A€, via the
photoelastic properties. Provided some electric energy was stored in the disk at the time, this
stored energy (proportional to € E?) changes due to the change in permittivity Ae. This change
in energy can be seen as the work of the electrostrictive force during the displacement. (A more
complete version of this argument is developed in [32], see Fig.|[3|a).

Material Wavelength (um) P11 P12 j Reference
GaAs 1.15 -0.165 -0.140 -0.072 [134]
Si 3.39 -0.09 +0.017 -0.051 [135]

Table 2. Photoelastic material parameters for GaAs, and silicon (Si) for comparison. The
photoelastic coefficients vary little for wavelengths with energies well below the material
bandgap [36].

Looking at Eq.|13|and the values of the photoelastic coefficients in Table|2] it appears in the
case of a WGM that the electrostrictively induced normal stresses are significantly larger than
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Fig. 4. 2D axi-symmetric FEM modeling of the electrostrictive stress and volume force. (a)
and (b) show respectively the 7z cross-section of the radial oy, and axial 6%, electrostrictive
stress distributions. The azimuthal normal stress Ggf_) (not shown here) is of comparable
magnitude. (c) and (d) plot the associated radial and axial volume force distributions. Black
arrows indicate the overall direction these forces point in.

the shear stresses. We will focus here for brevity just on the radial o;; and axial oy’ normal
stress components:

es

1
o = 758()"4 [PulE:* + p12 (|Eo|* + |E-|*)]
(14)

1
ol = *580n4 (P11 |E.|*+ pr12 (lEr|2 + IEe\z)]

Figure [Zl_f] (a) and (b) show the value of o, and o’ due to a single photon confined in the p=1,
m=10 WGM of a 1 um radius GaAs disk resonator of thickness 320 nm, already considered
in section 2. Figure ] (c) and (d) represent the associated volume force for both these stresses,
where .#* = —0,0 and F¢* = —0d,0%’. The black arrows show the net direction these forces
are pointing in. We see here that the electrostrictive force pushes outwards in both the radial
and vertical z directions, adding constructively to the radiation pressure force. The fact that
electrostriction and radiation pressure add up constructively as they do here is not true for all
materials and geometries. As we can see from Eq. Ef], since the p;; are negative for GaAs, all
electrostrictive stresses are positive, and confined photons tend to expand the material in all
directions. However this would not be the case for silicon disk resonators or waveguides, as the
coefficients p1; and pj; are of different sign and significantly different magnitude.

4. Optomechanical coupling in GaAs disks

4.1. Geometric contribution g5y,

Reference [37]] provides a perturbation theory for Maxwell’s equations in the case of shifting
material boundaries. This theory can be applied to determine the frequency shift of an optical
WGM to an arbitrary mechanical deformation of the confining dielectric disk. Following this

method, the term g, is calculated as a surface integral of the unperturbed optical fields over
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Fig. 5. (a) through (d): Displacement profile for the four mechanical eigenmodes listed in
Table[3] with exaggerated deformation. The surface color code illustrates the total displace-
ment, with red as maximum and blue as minimum.

the perturbed dielectric interface:
geo _ 20 G-7i) |Aennle) > — A(e,') |1 [*| dA 15
8om = 4 disk (q }’l) 812‘6‘” (812 ) | L| ( )

Here ¢ and 7 are respectively the normalized mechanical displacement vector and surface nor-
mal vector. E‘ [ (resp. d | ) is the parallel (orthogonal) component to the surface of the electric field

(electric displacement field). g and & are normalized such that max|g|=1 and 1 [ €|e|?dV = L.
Ag1y = € — & is the difference in permittivity between the materials on either side of the bound-
ary and A (61’21)=6f - & ! Here we are only interested in the geometric contribution to the
Zom» SO €] is simply n? over the entire disk, while &=1. g5 is computed from Eq. [15|using a
FEM simulation software (COMSOL Multiphysics). The results for the four mechanical modes

shown in Fig. [5]are summarized in Table 3] For a given mechanical mode, the displacement of

. L . . . Ao’ .
every point of the disk is spatially non uniform and gy, = — 22— is therefore dependent on the

somewhat arbitrary choice of the reduction point which experiences the displacement dx. The
normalization choice max|g|=1 in Eq.[I5]means that the point of maximal displacement is used
as reduction point. As evidenced in Table [3] different mechanical modes have vastly different
values of gins . Note for instance how the g5, value for the 1%* RBM is roughly 10 000 times
larger than for the out of plane ‘bowl’” mode. This difference illustrates how efficiently each
mechanical mode modulates the total cavity length (the dR/dx term in Eq. [2)) and confirms that

the first RBM is the mechanical mode with the highest g5p; .

Mechanical mode ‘bowl’ 1* RBM 2" RBM  ‘pinching’
Frequency 494MHz 1375GHz 3.5GHz 5.72 GHz
5% (GHz/nm) 0.11 1080 412 82
ghr (GHz/nm) 0 984 1720 231
g%l (GHz/nm) 0.11 2064 2132 313
Xzpr (M) 295100 1.23.100% 1.1510°% 2.17-10°°
257 (MHz) 3.2:10°°% 1.33 0.474 0.18
gl (MHz) 0 1.21 1.98 0.50
gio'al (MHz) 3.2.10°% 2.54 2.45 0.68

Table 3. Comparison between the geometric and photoelastic optomechanical coupling
strengths g5y, and ghy,, for four mechanical modes of a 320 nm thick, 1 um radius GaAs
disk, and a p=1 m=10, Ay ~ 1.3 um WGM, obtained through FEM simulations. The me-

chanical deformation profiles are shown in Fig[3]

Due to their extremely miniaturized dimensions, 1 gm GaAs disks exhibit remarkably large

optomechanical coupling, with gy, reaching over 1 THz/nm in the case of the first RBM.

(Here we see that the ~1.1 THz/nm numerically computed value is roughly 20% below the
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Fig. 6. Radial displacement and normal radial strain S1=S,, as a function of the radial
coordinate, for the first RBM ((a) and (b)) and for the second RBM ((c) and (d)) of a
1pum radius and 320 nm thick GaAs disk resonator. The values are obtained through FEM
modeling, using the approximation of an isotropic Young’s modulus for GaAs. The orange
highlighted zone between r=0.6 ym and r=1um and the black ring in the inset pictures mark
the region of highest electromagnetic energy density for a p=1 WGM. (The displacements
are normalized such that for both modes the mechanical energy is equal to kgT at 300 K).

value provided by the simplified expression g,, = @y /R ~ 1.4 THz/nm). The zero point fluctu-
ations xzpp are obtained by equaling the mechanical energy in the resonator to /i€y /2, yielding
xzpr=1.2-10"1 m for the first RBM, using the same reduction point as above. The single pho-
ton optomechanical coupling strength for this mechanical mode is go=gomxzpr ~ 1.3 MHz.
Note that these calculations are carried out without any AlGaAs pedestal under the disk, and
are therefore only valid for small pedestal radii (> 90 % undercut). For larger radii the stated
mechanical frequencies and g5, may differ significantly.

4.2.  Photoelastic contribution ghy,

To compute the photoelastic coupling contribution, first the unperturbed resonance frequency of
the desired WGM is obtained through a FEM simulation with uniform and isotropic €. Second,
the desired mechanical eigenmode is solved for in another FEM simulation, which provides the
complete deformation profile and strain distributions inside the resonator (we will focus in the
following discussion on the first RBM). While the radial displacement is zero at the center and
maximum near the periphery, the behavior for the normal radial strain is reversed. The normal
radial strain S,,=S; (in contracted notation) is maximal at the center of the disk and changes
sign right by the edge of the disk (this is a normal consequence of the circular geometry), see
Fig. |§| (a) and (b). The behavior is similar for the normal azimuthal and axial strains S, and
S3, which are of similar magnitude and largest near the center of the disk. The S4 and S¢ strain
components are zero over the whole disk, while the Ss strain component is roughly three orders
of magnitude smaller than S; > 3. We now use Eq. @to relate the strain distribution inside the
disk to changes in the dielectric tensor. Since S4, S5 and Sg are negligible, the off-diagonal



terms in the dielectric tensor can be neglected. The dielectric tensor modified by the RBM
displacement therefore takes the form:

-1
€ &1 = (1/n*+ p11S1 + p12S2+ p1253)
& with § & = (1/n+ p12S; +p1152+p1253)71 (16)
-1
& &3 = (1/n? + p12Si + p12Sa+ p11S3)

Note that it is now both anisotropic and dependent upon the position inside the disk resonator.
The problem of finding the new WGM resonance frequency under these conditions is solved
through another FEM simulation (with unperturbed geometric boundaries). This provides the
photoelastic frequency shift due to the mechanical displacement dx. In the linear limit of small
dx, the procedure leads to the photoelastic optomechanical coupling gh,, which is found to
amount to 0.98 THz/nm for the first RBM of the above considered disk and WGM. This value
is remarkably high, considering how inefficient the refractive index modulation is through the
first RBM. Indeed in order to maximize the photoelastic frequency shift the optical mode should
be localized in the region of highest strain. In the case of the first RBM the radial strain is not
only weak but also changes sign right around the area of highest optical energy density (see the
highlighted area of Fig.[6]b). In contrast, this condition is much better fulfilled for the second
order RBM (Fig.[6](c) and (d)). Accordingly, this translates into a remarkably high gh, of nearly
2 THz/nm for this mechanical mode, see Table [3| Because of the reduced geometric coupling
for the second RBM, its total optomechanical coupling g{)‘”“’ is comparable to that of the first
RBM, around 2.5 MHz, albeit at a much higher mechanical frequency of 3.5 GHz. Table [3]
summarizes the g values for the four considered mechanical modes of Fig.[3]

Figure([7|plots the dependency of g)* and g§* with disk radius for the first and second RBM.
Each purple (blue) dot corresponds to a distinct FEM simulation of g (g§“’), while the solid
blue line for ggeo corresponds to the value given by the following analytical formula:

, oy h ‘ Ap E
geo _ geo ~ " th o, =22, | —— 17
80 = 8omTE =\ amer @, VT TMT R p(1—v2) a7

Here meg, Ap, E, p and Vv are respectively the effective mass of the mode, calculated with a re-
duction point sitting on the disk boundary, a frequency parameter, the Young Modulus, density
and Poisson ratio of GaAs, the values of which are provided in Table Qf,, is the mechanical
frequency of the RBM of order P [38 [39]. We have obtained Eq. |17 through the analytical
treatment of a free elastic circular plate. For the first RBM, Eq.|[17| accurately reproduces the
trend provided by FEM simulations, but overestimates the coupling by 20% because it neglects
the out-of-plane component of the mechanical motion. For the second RBM the overestimation
is more pronounced, reflecting a larger out-of-plane component of the mechanical mode.
Since the effective mass scales with R?, g&* scales as (%)3/2. Interestingly, g/ rises faster
than g§* with decreasing disk radius. For instance for the 1st RBM (Fig|7|a), gh* goes from
being two times smaller than g§ ™’ for disks of radius R=10um, before reaching comparable
values for 1pum radius disks. For the 2nd RBM (Fig[7]b), the photoelastic coupling is always
the dominant coupling mechanism. Note that the maximal photoelastic coupling is reached for
R ~ 1um. Further reducing the disk dimensions reduces the coupling as the optical mode is no
longer well localized on the region of highest strain.

4.3.  Energy considerations

The link between radiation pressure and boundary deformation and electrostriction and pho-
toelasticity can be understood by looking at the work done by the optical forces during a me-
chanical displacement. Incidently, these energy considerations provide an additional way of
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Fig. 7. Comparison between the geometric and photoelastic optomechanical coupling
strength gy for the TE (p=1) WGM of a GaAs disk of thickness 320 nm, as a function
of radius, for the first RBM (a) and second RBM (b), in log scale. The vertical dashed red
line represents the radius r=0.7um, at which bending losses become limiting at the con-
sidered WGM wavelength of 1.3 um. For the first RBM, the combined optomechanical
coupling gh“+ g8 reaches 4 MHz for the smallest disks. (The dashed blue line represents
the values given by Eq.[T7] reduced by 20%). For the second RBM, photoelasticity is the

dominant optomechanical coupling mechanism, with gge reaching 2 MHz for R=1 um.

Frequency parameter Ap Effective mass ratio GaAs material parameters
A A A3 Meii1/m_ meia/m megs/m_ p [kgm ] E[GPa] v
2.055 5.391 8.573 0.786 0.969 0.988 5317 85.9 0.31

Table 4. First three values of the frequency parameter Ap and effective mass ratios for GaAs
disk RBMs, and GaAs material parameters used in the calculations. The effective mass ratio
is defined as the effective mass associated to a reduction point on the disk boundary mes
divided by the disk mass m.

calculating both the geometric and photoelastic optomechanical couplings. Following Eq. A
we can write a generalized expression:

_ 3 Wi Z03Si; AV
8om T

(18)

Here the numerator corresponds to the work produced by the optical stress due to a single con-
fined photon, during the displacement Ax, in the case of a linear elastic solid starting at rest [40].
The S;; are the mechanical strain components resulting from the displacement Ax, and the o;;
are the radiation pressure or electrostrictive stress components described respectively in Egs.[I0]
and[T3] This formulation and the method discussed in[4.2]yield values in very good agreement,
within less than 1 % difference. Note that both for radiation pressure and electrostriction, in the
case of the 1st RBM at least, a large part of the work is done by the optically induced azimuthal
stress 0gg. Furthermore, for the same mechanical mode, the larger axial stress 0, in the case of
electrostriction produces negative work as the disk expands in the radial direction but contracts
in the axial direction. These considerations shed light on two seemingly contradictory observa-
tions. On one hand the photoelastic coupling gge is slightly smaller than the geometric coupling
gﬁeo for the first RBM, on the other hand the radial stress per photon is several times larger for
electrostriction than radiation pressure. As a consequence, even though the movement of the 1st
RBM is predominantly radial, the full picture of optomechanical coupling can not be obtained
looking solely at the forces exerted in the radial direction.



4.4. Discussion

We show that the second order RBM is an interesting mechanical mode thanks to its large total
optomechanical coupling and high mechanical frequency. While this type of mode tendentially
has a lower mechanical Q due to larger mechanical coupling to the pedestal, its anchoring losses
could be overcome with a carefully engineered pedestal geometry [18]].

We verify that both the geometric and photoelastic coupling magnitudes are comparable
when considering a transverse magnetic (TM) WGM instead of a TE WGM, with values vary-
ing by less than 20 %. We focused here on p=1 WGM, as these are the modes with the highest
radiative optical Qs [13]. When considering different WGMs, the same rule of thumb remains:
in order to maximize the photoelastic optomechanical coupling, the regions of high electromag-
netic energy should be co-localized with regions of high mechanical strain.

For comparison the photoelastic optomechanical coupling has been computed on Si disks of
identical dimensions using the photoelastic parameters of Table The obtained g{)° for the 1st
RBM is roughly three times lower than for GaAs, notably because of the reduced photoelastic
coefficients of Si, but should nevertheless not be neglected.

Finally recent work investigating the optomechanical coupling in distributed Bragg reflector
GaAs/AlAs vertical cavities [41] shows these geometries are also well suited to take advantage
of the photoelastic coupling mechanism, thanks to an efficient overlap between the optical field
and strain maxima resulting in values of gh,, reaching several THz/nm.

5. Conclusion

We investigated the magnitude of the optical forces due to confined photons in GaAs semicon-
ductor optomechanical disk resonators, successively addressing the case of radiation pressure
and electrostriction. We showed these forces add up constructively in the case of GaAs disks.
Next, we provided a comparison between the photoelastic and geometric optomechanical cou-
pling for various modes of a GaAs disk, and the scaling of these couplings with disk radius.
An interpretation of this coupling in terms of the work done by the optical forces during a me-
chanical displacement is proposed and numerically verified, leading to an additional estimation
of go. Photoelasticity provides an efficient tool when designing structures for optomechanical
applications. The large photoelastic coupling in GaAs underscores the strength of this material
for optomechanical applications, in complement with other coupling mechanisms proposed in
GaAs membranes and cantilevers [[17,42].
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