
Microphotonic forces from superfluid
flow - Supplementary Information

1 Photoconvective force

Figure 1: Laser light is evanescently coupled into a microtoroid whispering gallery
mode (WGM) and confined to the microtoroid’s outer boundary where optical absorp-
tion and heat generation takes place (red glow). This increase in temperature causes
superfluid helium to flow up the pedestal towards the heat source (thermomechanical
effect, blue arrows). At the level of the heat source, superfluid helium is converted into
the gas phase (red arrows).

Figure 1 schematically illustrates the experimental conditions. A silica microtoroid
rests upon a silicon pedestal on a silicon chip. A thin film of superfluid 4He (<5 nm)
covers all surfaces inside the sample chamber, including the microtoroid and the chip.
Here we estimate the force on the microtoroid resulting from the light induced flow
and evaporation of superfluid helium. To this end, we first carefully estimate the mass
flow rate of superfluid helium caused by optical absorption in the microtoroid.

Since the thermal conductivity κsf of superfluid helium is many orders of magnitude
larger than that of silica κSiO2 at our experimental temperatures [1, 2], we assume in the
following that all the heat flow occurs through superfluid convective heat transfer and
not through conduction in the silica. Indeed:

κsf tsf

κSiO2 tSiO2

>> 1 (1)
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Figure 2: Side view of a microtoroid resonator. Superfluid helium flow originates from
the pedestal (blue arrows) and flows towards the hotter microtoroid outer boundary
where it is converted into gas phase (red arrows). Note how the velocity of the helium
is initially purely vertical before acquiring a radial component.

with tsf and tSiO2 respectively the superfluid film thickness and the silica microtoroid
thickness. The validity of this assumption is visible in Fig. 4(a) of the main text,
where as soon as the superfluid film boils off the microtoroid is no longer in thermal
equilibrium with the cryostat. We consider the steady state case where a heat power
Pabs is generated through optical absorption at the microtoroid outer boundary. Since in
the steady-state neither superfluid nor normal fluid can accumulate on the microtoroid,
and any generated normal fluid is viscously clamped to the surface and cannot flow
out, this implies that all incoming superfluid must be vaporized. The mass of helium
vaporized per second ṁ is therefore given by:

ṁ =
Pabs

L − 〈µvdw〉 + ∆H
(2)

With L ' 17.5 kJ/kg the latent heat of vaporization in our experimental conditions
[3], 〈µvdw〉 ' −6.4 kJ/kg the average van der Waals potential of the superfluid film
(see section 3.1) and ∆H the change in enthalpy of the superfluid from the cryostat
temperature T0 to the evaporation temperature Tevap

1.
In the steady state, all incoming superfluid must arrive through the pedestal. (The

effect of condensation of helium on the microtoroid surface is negligible, see section
3.2). Superfluid flow therefore enters the microtoroid with only upwards vertical mo-
mentum. At every point on the periphery we consider the evaporation occurs isotropi-
cally in the outwards facing half space (see Figure 2), with a root mean square velocity

1The change in enthalpy ∆H is small compared to the latent heat of vaporization and can safely be
neglected [3].
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of:

vrms =

√
3kBTevap

mHe
(3)

Here kB = 1.38×10−23 J/K, mHe = 6.6×10−27 kg is the mass of a helium atom and Tevap
the temperature of the evaporated superfluid atoms (' 1 K). The microtoroid therefore
experiences a net inward radial force, due to the change in momentum of the superfluid.
The magnitude of this radial force is given by:

Fradial = −
d(mvradial)sf

dt
= ṁvrms

1
π

π/2∫
−π/2

cos(θ)dθ ×
1
π

π/2∫
−π/2

cos(φ)dφ (4)

where the two integral terms account for the projection of the evaporated superfluid’s
momentum on the radial direction (see Fig. 2). Taking a value for the absorbed power
in the microtoroid Pabs = 1 µW, Eq. 4 yields Fradial ' −1.3 × 10−9 N.

Eq. 4 predicts both a linear dependence of the force on the laser power, which is
what we observe experimentally (see Supplementary Fig. 5), as well as film thickness
and pedestal geometry. Note that the vaporization does not produce a net force on
the microtoroid in the vertical direction z, as the vaporization is isotropic along z and
therefore creates no net change in momentum along z. There is however a force Fz

exerted on the microtoroid by the superfluid flow as it changes direction at the junction
between the pedestal and the silica disk. The magnitude of this force and its role in
our results are discussed in section 3. Finally, by comparing the energy required to
evaporate a helium atom to the energy of the incoming photons we can approximate
the number of helium atoms N evaporated per absorbed photon

N =
~ω0

kB

(
µ + 3

2 Tevap

) (5)

where ω0 is the the optical resonance frequency and µ = 7.15 K is the chemical poten-
tial [4]. For an evaporation temperature of 1 K this gives a total of 1100 helium atoms
evaporated per absorbed photon. Next we compare the magnitude of the radial photo-
convective force Fradial due to the presence of the superfluid to the more conventional
radiation pressure force.

2 Comparison with radiation pressure force
The radial radiation pressure force acting on the microtoroid’s outer boundary is given
by [5] :

FRP = Nph~
ω0

R
=

PQ
ω0R

(6)

where Nph, P, Q and R are respectively the intracavity photon number, the dropped
optical laser power, optical quality factor and the microtoroid major radius. Taking a
dropped optical power P equal to the value of Pabs previously used (1 µW), we find
a radiation pressure force acting radially on the microtoroid outer boundary of FRP =
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Figure 3: Top view of a microtoroid resonator of radius R, showing the outline of the
underlying pedestal in dashed line, and the pedestal radius RP at the contact point with
the silica. Helium flow originates from the pedestal and flows towards the microtoroid
outer boundary where the optical absorption and heat generation take place.

1.8×10−10 N. (The parameters used in the photoconvective and radiation pressure force
calculations are given in Table 3.1).

We find that the magnitude of the superfluid mediated photoconvective force Fradial
is approximately one order of magnitude larger than the radiation pressure force acting
on the microtoroid, in very good agreement with the experimental results, see Fig. 3(a)
in the main text.

3 Speed of flow through the pedestal, film boil off and
vertical force

From Eq. 2, we can obtain the superfluid volumetric flow rate V̇:

V̇ =
ṁ
ρ
'

1
ρ

Pabs

L − 〈µvdw〉
(7)

Here ρ is the superfluid helium density. As discussed in section 3.2 all this helium flow
must come through the pedestal. The velocity of the fluid is maximal at the narrowest
point of the pedestal, at the junction with the reflown silica disk. The speed of the flow
through this choke point is therefore:

v =
V̇

2πRP t
(8)

where t and RP are respectively the superfluid film thickness and pedestal radius, and
2πRpt is the cross sectional area through which superfluid helium can inflow at the level
of the pedestal (see Figure 3). In the highly undercut microtoroid used in the experi-
ments, the pedestal radius RP is estimated (through a Finite Element simulation fitting
of the microtoroid mechanical resonance frequencies) to be around 1.65 µm. Taking
Pabs = 1 µW as in section 1, we get a flow speed in the range of 14 m/s. It is inter-
esting to note that the maximum flow rate at the narrowest part of the pedestal should

4



ultimately limit the thermal load which can be removed by the superfluid film. In our
experiments, film boil off occurs for a power of 2.2 µW (see Fig. 3(b) in the main text),
which according to Eq. 8 would correspond to speeds in the 30 m/s range given our
uncertainty on the pedestal radius, close to the Landau critical velocity beyond which
superfluid helium flow is no longer dissipationless [6]. This could be an explanation
for the abrupt film boil off observed in the experiments.

We can also note that the superfluid flow creeping up the pedestal is purely verti-
cal right before reaching the silica disk, at which point it becomes purely horizontal.
Therefore, similarly to Eq. 4 we can define a vertical force Fz exerted on the micro-
toroid at the junction with the pedestal due to the change in momentum of the superflow
(not linked to evaporation):

Fz = −
d(mvz)sf

dt
= ṁv =

ṁ2

2ρ πRP t
(9)

For Pabs = 1 µW as previously considered, we find Fz = 6 × 10−10 N. Note that from
Eq. 9 and Eq. 2, it appears that this force Fz should have a quadratic dependence upon
power Pabs, at least for the lowest optical powers, as has been observed in earlier exper-
iments in bulk superfluid [7, 8]. We believe Fz, even though comparable in magnitude
to Fradial, does not couple efficiently to the mechanical mode of the microtoroid, as the
force is applied to a node of the mechanical displacement (see inset of Fig. 2(b) in the
main text). It therefore plays a limited role in our experiments, as evidenced also by the
linear dependence on power of the superfluid photoconvective force we observe (see
Fig. 5). Such a force could however be advantageously leveraged in different designs.

3.1 Van der Waals potential energy
The van der Waals potential µvdw at a distance d from the substrate is given by (for thin
films under 5 nm):

µvdw = −
αvdw

d3 (10)

where αvdw = 2.65×10−24 m5s−2 is the van der Waals coefficient for silica. Considering
the first monolayer is clamped to the substrate and does not participate in the heat
transport [9], the average chemical potential 〈µvdw〉 of the flowing superfluid in our
experiment is given by:

〈µvdw〉 '
1

2 − 0.35

x=2nm∫
x=0.35nm

µvdw (x) dx = −6.4 kJ/kg (11)

where 0.35 nm is the approximate thickness of the first helium monolayer on the silica
microtoroid and 2 nm is the approximate superfluid film thickness. The contribution
of the van der Waals potential is non negligible, as it represents close to 36% of the
latent heat of vaporization, and is significantly larger than the change in enthalpy of the
superfluid. Figure 4 plots µvdw as a function of the distance to the silica substrate.
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Figure 4: Chemical potential −µvdw (d) as a function of distance d to the silica sub-
strate (blue); shaded region is the thickness of the superfluid film in the experiments
over which 〈µvdw〉 is calculated (orange). In green for comparison, latent heat of vapor-
ization of liquid helium at 500 mK.

Parameter Unit Value
Microtoroid radius µm 37.5
Pedestal radius (at narrowest) µm 1.65
Laser wavelength nm 1555

Photoconvective force
Absorbed power µW 1
Latent heat of vaporization L kJ/kg 17.5
Average van der Waals potential 〈µvdw〉 kJ/kg -6.4
Superfluid helium density ρ kg m−3 145
Mass flow rate ṁ kg/s 4 × 10−11

Flow speed at the pedestal m/s ' 14
Radial photoconvective force Fradial N 1.3 × 10−9

Vertical photoconvective force Fz N 6 × 10−10

Radiation pressure
Dropped power µW 1
WGM Optical Q - 8 × 106

Intracavity photons - 5.2 × 104

Radial radiation pressure force N 1.8 × 10−10

Table 1: Superfluid parameters and geometric parameters used in the calculations.
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Figure 5: Linear response of the photoconvective force with laser power. We send a
1 µW laser power beam through an electro-optic modulator (EOM) and into the mi-
crotoroid and look at the driven response of the microtoroid mode in presence of the
superfluid as a function of the drive power on the EOM. (Note that we plot here the
normalized driven response, which is the driven response divided by the drive power,
such that a flat line corresponds to a linear response). The response is essentially lin-
ear over a 50 dB range. The drop in response at the highest drive power is due to a
saturation of the EOM response.

3.2 Effect of condensation on the microtoroid surface
Here we discuss the influence of the condensation of helium atoms on the microtoroid.
The impingement rate r of gas molecules on a surface (in particles per unit area per
unit time) is given by the kinetic theory of gases as a function of gas pressure P:

r =
P

√
2πkBTmHe

(12)

Even if every single helium atom that struck the top and bottom surface of the micro-
toroid condensed on it, this would correspond to a mass flow rate of:

ṁcondensation = r
2πR2

NA
M (13)

with R the microtoroid major radius, NA Avogadro’s constant and M ' 4 g/mol the
molar mass of helium. This upper bound is more than one order of magnitude smaller
than the mass flow rate due to the thermomechanical effect in our experiments (see
Table 3.1). The effect of helium condensation on the surface can therefore safely be
neglected. Note as well that condensation events on the surface of the microtoroid are
‘energy neutral’ as each condensing atom releases its latent heat upon condensation
before removing the nearly the same amount as it evaporates at the microtoroid outer
boundary, and therefore does not substantially affect the results of Eq. 2.
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Figure 6: Centrifugal force from superfluid persistent currents. (a) Schematic of the
proposed design. (b) cross sectional view of the anchoring points marked by a green
asterisk in (a), showing a superfluid layer of thickness t covering a section of thickness
h and width w. The superfluid cross section is 2 (h + w) t.

4 Forces from optically generated superfluid persistent
current flow

Here we investigate the prospect of leveraging optically generated persistent current
flows in superfluid helium as a means for micromechanical actuation. The concept,
in essence a micromechanical analog of Kapitza’s famous ‘spider’ experiment [8], is
illustrated in Fig. 6. A ring resonator of outer radius R2 and inner radius R1 is connected
to an inner pedestal via curved support spokes. As discussed in section 3, optical power
dissipated at the level of ring will generate a flow of superfluid up the pedestal and
across the spokes towards the hot spot. The superfluid reaching the ring will carry
angular momentum and have a speed v = V̇/A; where V̇ given by Eq. 7 and A is the
sum of the cross sections of the superfluid film at the four anchor points marked by a
green asterisk in Fig. 6. This flow will generate a persistent current on the ring, marked
by the circulating blue arrows. Such persistent currents have already been generated in
centimeter scaled superfluid helium thin film resonators through electric driving [10],
and have lifetimes of hours up to days [11, 10]. This circulating mass of superfluid is
associated to a centrifugal force applied to the ring. In the limit of a narrow annulus
(R2 − R1)/R2 << 1, this force can simply be expressed as:

Fc ' m
v2

R2
(14)

where m is the mass of superfluid circulating at speed v on the ring. This force could
reach large magnitudes: for instance the centrifugal force Fc due to a 10 nm thick
superfluid helium film rotating at 30 m/s on a ring with R1 = 40 um and R2 = 50 um is
approximately 1.5 × 10−7 N, which corresponds to the radiation pressure force exerted
by over 50 million intracavity photons in a resonator of this size.

In the case of a narrow annulus, Fc can be expressed in the steady state as (see Eq.
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7):

Fc ' m
P2

abs

ρ2 (L − 〈µvdw〉)2 A2 R
=

4 π (R2 − R1) t

ρ (L − 〈µvdw〉)2

(Pabs

A

)2

(15)

As evidenced by Eq. 14, the maximum force will be limited by the superfluid critical
velocity. However, unlike the radiation pressure force which scales linearly with optical
power, Fc scales with the power density Pabs/A (see Eq. 15). This means these large
persistent current forces can be obtained even with minute optical powers in the nW
range, simply by reducing the cross sectional area A, in effect using a constriction to
accelerate the flow to large velocities as it enters the ring.

Even more interestingly, thanks to the quantum nature of superflow, the centrifu-
gal force Fc will persist even when the laser power is turned off. Unlike optical ra-
diation pressure and photothermal forces, which typically decay within the range of
nanoseconds and microseconds respectively for optical microresonators, the superfluid
persistent flow can persist for hours, emulating in a sense the behaviour of a > 1018

optical Q cavity. This unique property could have applications in terms of non volatile
memories. As an example, let us consider a toroidal resonator of the kind described in
[12] (effective mass 5 ng; mechanical frequency ΩM/2π = 20 MHz; k = 8 × 104 N/m
spring constant; major radius 35 um). The centrifugal force Fc ' 1 × 10−7 N exerted
by a 10 nm thick circulating superfluid helium film on the outer toroidal boundary with
speed 30 m/s would be sufficient to produce a shift in the optical resonances frequencies
of the resonator of approximately 8 MHz, which is larger than the optical linewidths
present in these high Q microtoroidal resonators, potentially enabling such applications
as non-volatile optomechanical memories and reconfigurable wavelength routing. (The
figures of merit in terms of optical linewidth shifts would be comparable with 200 nm
thick ring resonators such as depicted in Fig. 6, whose smaller spring constant would
allow for two orders of magnitude larger deflection but that tend have lower optical Qs
in the 106 range.)

5 Superfluid convective forces in Bulk
Here we briefly address the superfluid convective forces arising from heat transport
in bulk superfluid, and point towards optimal parameters required to maximize these
forces. Heat transport in bulk liquid helium II can be described in terms of Landau and
Tisza’s two fluid model [6, 13] where the bulk liquid is divided into a superfluid com-
ponent of density ρs and speed vs carrying no entropy, and a normal fluid component
with density ρn and speed vn which carries the heat. For a steady state linear heat flow,
the heat flux Q̇ per unit area A is given by [14]:

Pd =
Q̇
A

= ρS Tvn (16)

where ρ = ρn + ρs is the total bulk density, S the entropy and T the temperature.
Additionally, the condition of no mass transport requires [14]:

ρsvs + ρnvn = 0 (17)
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Figure 7: Schematic illustration of heat transport in bulk helium II. Superflow (blue)
and normal fluid counterflow (red) at temperatures below 1.9 K such that ρs > ρn.
There is no net flow of matter: ρsvs +ρnvn = 0; so the superfluid component flow speed
vs (blue arrows) is smaller than the normal fluid flow speed vn (red arrows).

There is a momentum flux ρ~v · ~v associated to the flow of each component, such that
the total pressure acting upon a heat source is given by [7]:

p = ρsv2
s + ρnv2

n (18)

Since ρs(T ), ρn(T ) and S (T ) are tabulated functions of temperature [3] (see Figures 8
and 9), for a given T and power density Pd it is possible to completely determine vs,
vn and p through Eqs. 16, 17 and 18. The flow of each component is associated to a
mass flow rate ṁs = ρsAvs = ρnAvn and an associated kinetic energy, such that one can
define an efficiency η relating the kinetic energy acquired by both fluid components per
unit time to the heat flux:

η =

1
2ρsv3

s + 1
2ρnv3

n

Q̇/A
(19)

Here one needs to be careful to enforce the condition vs, vn < vcrit, with vcrit ' 60 m/s
the Landau critical velocity [14]. Indeed, with Pd = 106 W/m2 (for example 1 µW on
1 µm2) and T = 0.5 K, Eq. 16 gives an unphysical normal fluid speed of vn = 16.5
km/s and a heat to kinetic efficiency greater than 1. The function η

(
Q̇/A,T

)
with the

condition vs, vn < vcrit is plotted in Fig. 10. From this figure we see that for low power
densities, the heat to kinetic efficiencies are always low, irrespective of the temperature,
precluding efficient optical actuation. For higher power densities (Pd > 104 W/m2),
the theoretical efficiency can reach maximal values in the few tens of percent range,
similar to values reported in the literature [15]. There is an optimal temperature at
which maximal efficiency is reached, and the value of this optimal temperature depends
on the power density. Here we see that enforcing vs, vn < vcrit is sufficient to guarantee
energy conservation, with η < 1 over the entire parameter space. Similarly, we can
plot the pressure resulting from the heat flow normalized to the power density over the
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Figure 8: Superfluid and normal fluid component densities ρs and ρn as a function of
bulk temperature. Dots: data from Donnelly et al. [3]; solid line: interpolated function.
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Figure 9: Bulk superfluid entropy S (T ) (log scale). Dots: data from [3]; solid line:
interpolated function.
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Figure 10: Heat to kinetic energy conversion efficiency η as a function of temperature
and power density.

same parameter space:
p

Pd
=
ρsv2

s + ρnv2
n

Q̇/A
(20)

This is plotted in Fig. 11, in units of N/W. From this figure we can see that see that
simply immersing the current experiment in bulk superfluid helium at for example
1K is not sufficient to allow for large convective forces. Indeed, in the experiment
described in the main text, 1 microwatt of heat is dissipated over the toroid’s outer
surface, corresponding to a power density Pd = 384 W/m2, marked by the red dot in
Fig. 11. This power density is too low for strong optical forces, and optical powers of
approximately 260 µW would be needed to reach the optimum Pd ' 105 W/m2 at this
temperature. Conversely, this operating regime could also be reached by maintaining
Q̇ = 1 µW but employing a smaller resonator with a surface A ' 10 µm2. In the latter
case, the theoretical bulk superfluid convective force would be in the range of 2.5×10−8

N, approximately 17 times larger than the force demonstrated from the evaporative
recoil in superfluid thin films. This increase can be attributed to two factors. First,
an increase in the heat to kinetic conversion efficiency η due to the absence of latent
heat absorption in the bulk case. Second, this increase can also be understood in terms
of NHe, the effective number of helium atoms set in motion by each absorbed photon,
obtained by dividing the helium atom flow rate by the photon absorption rate:

NHe =
ρnAvn

mHe
×
~ω0

Q̇
=
ρnAvn

mHe
×
~ω0

AρS Tvn
=
~ω0

mHe
×

ρn

ρS T
(21)

From Eq. 21 it appears NHe can be simply expressed in terms of the ratio of photon en-
ergy to helium atom mass times a function which only depends on temperature; NHe (T )
is plotted in Fig. 21. It possesses a maximum of ∼8000 near 1 K, approximatevely 7
times larger than the number of atoms set in motion in the evaporative case, resulting
in a larger momentum transfer per absorbed photon.
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Figure 11: Pressure due to heat flow normalized to power density p/Pd as as a func-
tion of temperature and power density. The red dot marks the position of our current
experiment if it were immersed in bulk helium at 1 K.
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Figure 12: Number of helium atoms set in motion per absorbed photon NHe, as a func-
tion of bulk temperature (see Eq. 21).
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6 Feedback cooling

6.1 Langevin equation approach to the theory of feedback cooling
While the theory of feedback cooling has been extensively covered in numerous pub-
lications [16, 17, 18], here a brief theoretical description is presented for clarity. Quite
generally the homodyne photocurrent, which is proportional to the phase fluctuations
imparted by the mechanical motion, can be expressed as

δi(ω) = Gdetδx̃(ω) (22)
= Gdet (δx(ω) + δN(ω)) (23)

where δN(ω) is measurement noise and Gdet is the detection gain given by the detector,
interferometer response and optomechanical interaction. In our case the measurement
noise is optical shot noise, which is spectrally flat over the region of the mechanics.
Deriving a feedback force from this, the photocurrent is fed into an amplitude modula-
tor placed before the microtoroid (see main text Fig. 2(a)). Modulo the cavity response,
this results in direct amplitude modulation of the intracavity field and subsequently an
applied optically mediated feedback force, namely Ffb(ω) ∝ δi(ω). Combining the
effect of detection, actuation and filtering into a single gain term the feedback force
becomes

F f b(ω) = −gχ−1(Ωm)δx̃(ω) (24)

where g is the feedback gain and the term χ−1(Ωm) has been introduced to make
the gain unitless and facilitate factorization into the mechanical susceptibility in later
steps. Substituting this expression into the Fourier transformed version of the quantum
Langevin equation for the oscillator position yields

δx(ω) = χ′(ω)
[
Fth(ω) − gχ−1(Ωm)δN(ω)

]
(25)

where χ′−1(ω) = m−1
eff

[
Ω2

m − ω
2 + iΓ′mΩm

]−1
is the mechanical susceptibility with mod-

ified linewidth Γ′m = Γm (1 + g). The mode temperature can then be estimated from the
integrated power spectral density derived from the photocurrent S x̃x̃(ω) = 〈|δx̃(ω)|2〉
giving

T̃ =

∞∫
−∞

dω S x̃x̃(ω) (26)

=

(
1 −

g(g + 2)
SNR

)
1

1 + g
T0 (27)

where T0 is the initial temperature and the signal-to-noise ratio (SNR) is given by
SNR = S x̃x̃(Ωm)/SNN(Ωm). With an initial temperature of T0 = 715 mK this theory accu-
rately describes the behaviour of our system, as can be seen in main text Fig. 5 (solid
line). However, since this temperature estimate is derived from the same photocurrent
that is applying the feedback, correlations between measurement noise and mechan-
ical motion obscure the actual temperature T . These correlations only occur at high
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gain and can be easily accounted for given the SNR and gain. The actual temperature,
represented by the dashed line in main text Fig. 5, can be shown to be given by

T =
SNR + g2

SNR − g(g + 2)
T̃ (28)

resulting in a slightly higher final temperature of 137 mK.

6.2 Magnitude of applied force required to reach the ground state
Feedback cooling can also be treated via a stochastic master equation approach (see
for example [19]). This is advantageous since it allows the conditional uncertainty
in the state after measurement to be distinguished from uncertainties introduced by
the feedback force in the final motional variances. For instance, constraints on the
maximum magnitude of the feedback force will limit the final occupancy achieved,
even if the measurement conditions the state of the oscillator – prior to feedback – into
a perfect coherent state. Here, we use the quantum stochastic master equation approach
to determine the magnitude of the feedback force that is required to reach the quantum
ground state, following [20]. In [20] it is shown (Eq. (5.40)) that the final occupancy
of a high quality oscillator under the action of feedback cooling is given in the rotating
wave approximation by

〈〈n̄b〉〉 = VX −
1
2

+
4ηCV2

X

1 + G
, (29)

where VX is the conditional variance of the X quadrature of the oscillator (which in
this case is equal to the Y quadrature variance), G is the feedback gain (similar to g
above), η is the measurement efficiency, and the double angle brackets signify that the
expectation value is taken both over the quantum uncertainty of the state and the clas-
sical stochastic diffusion due to imperfections in feedback. In the bad cavity limit C is
the optomechanical cooperativity which equals 4g2

om/κΓm with gom being the coherent
amplitude boosted optomechanical coupling rate, and κ and Γm being the cavity and
mechanical decay rates, respectively.

The first two terms in Eq. (29) represent the quantum uncertainty in the conditional
state prepared by measurement, while the final term is the uncertainty introduced by
imperfections in the feedback. As can be seen, if the feedback gain G → ∞, this last
term goes to zero and no degradation is introduced by feedback. More generally, finite
feedback gain will lead to some degradation. To determine at what stage constraints in
feedback gain preclude reaching the ground state, we take the limit where C � n̄, with
n̄ being the thermal occupancy of the bath, and η → ∞. In this case, it can be shown
from Eq. (5.27) in [20] that to first order in n̄/C

VX =
1
2

+
n̄

4C
. (30)

We see that the conditional quadrature variances approach the zero-point motion level
of 1/2 as n̄/C → ∞. Substituting this expression into Eq. (29) we find that in this limit

〈〈n̄b〉〉 = n̄meas + n̄ f eed, (31)
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where

n̄meas =
n̄

4C
(32)

n̄ f eed =
C + n̄
1 + G

, (33)

are, respectively, the phonon occupancies due to imprecision in the measurement and
non-ideality of the feedback. For the feedback to be sufficiently good to allow the
ground state to be approached, irrespective of the measurement strength, we require

n̄ f eed � 1. (34)

In the relevant limit where the thermal bath is not already near the ground state (i.e.
n̄ � 1), to satisfy this condition clearly requires that G � 1. Using this and rearranging
Eq. (34) for G we find the condition on the gain

G � C + n̄. (35)

As first sight, it may be surprising that this condition depends on the cooperativity. This
occurs because, as the cooperativity increases the radiation pressure backaction on the
mechanical oscillator also increases. The feedback force must increase to compensate
for this additional heating.

The feedback gain G is a dimensionless parameter. Practically speaking, we would,
rather, like to know the force in newtons required to approach the ground state. To de-
termine this, we take the derivative of the feedback Hamiltonian in [20] (Eq. (5.32))

with respect to the dimensioned position quadrature x̂ ≡ X̂/
√

2xzp, where xzp =
√

~
2meffΩm

with me f f and Ωm being the effective mass and resonance frequency of the mechanical
oscillator, respctively (note, our X quadrature is labelled XM in [20]). This provides the
x-quadrature force applied by the feedback. A similar result can be obtained for the
y-quadrature. For the x-quadrature we find that

Fx =
−~ΓG

〈
X̂
〉

2
√

2xxp
. (36)

It is important to realise that in this expression the mean quadrature position of the
mechanical oscillator 〈X̂〉 is a stochastic variable, the value of which depends on the
measurement record and feedback up to the time of measurement. Essentially, this
identifies the best-estimate of the position of the oscillator given our knowledge of its
past trajectory. In principle, at any given time for a particular trajectory it can take on
any value. Therefore, in principle, for any feedback cooling protocol to work perfectly,
it must be possible to apply an arbitrarily strong force. In practise, however, 〈X̂〉 is
typically well confined near the origin of phase space, with its standard deviation giving
a good indication of the force to achieve effective cooling. In the steady-state, this is
given by (see Eq. (5.37) in [20])

∆X̂ ≡
√
〈〈〈X̂〉2〉〉 =

√
4ηCVX

1 + G
≈

√
2C
G
, (37)
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where in the approximation we have taken the relevant limit discussed above, where
η→ 1, C � n̄ and G � 1. The standard deviation of the applied force is then

∆Fx =
~Γ
√

GC
2xxp

. (38)

As we found earlier, the requirement to approach the ground state is G � C + n̄, which
since C � n̄ is also required can be approximated as G � C. Substituting this into the
above expression we obtain the condition on the magnitude of the force

∆Fx �
~ΓC
2xxp

. (39)

Let us consider, for the purpose of illustration, the specific case where C = 16n̄. In
this case, from Eq. (30) the conditional variance of the X-quadrature due to measure-
ment is VX = 1/2 + 1/64 closely approaching the ground state value of 1/2, while the
required feedback force magnitude is

∆Fx �
8~Γn̄
xxp

≈
8kBT
Qxzp

, (40)

where Q ≡ Ωm/Γm is the mechanical quality factor, and we have approximated n̄ =

kBT/~Ωm, valid in the n̄ � 1 limit, with kB being Boltzmann’s constant and T the bath
temperature.

Now that we have a relationship for the standard deviation of the force required to
bring the mechanical oscillator close to its ground state, we can answer the question as
to whether, with our mechanical parameters and the superfluid forces observed within
this paper, the ground state can realistically be reached. We note that, of course, sub-
stantial enhancements in optomechanical coupling would be required to achieve the
separate necessary criterion C � n̄ to reduce the conditional variance due to measure-
ment to close to the ground state level. Such enhancements have been achieved in other
experiments with microtoroids – see for example [21]. Never-the-less, we can still ex-
amine whether, once this optomechanical coupling is achieved, the ground state could
be approached with the forces achieved in the main paper.

Our microtoroid had a mechanical resonance frequency of Ωm/2π = 1.35 MHz and
a dissipation rate of Γm/2π = 530 Hz, so that Q = 2, 500. It’s effective mass, calculated
by finite-element modelling was me f f = 25 ng. Substituting these values into Eq. (40)
and taking a bath temperature of 0.7 K, consistent with our experiments, we find that
the condition on the standard deviation of the required force ∆Fx � 60 pN. This
compares favourably to the peak superfluid force magnitude observed in the main text
of 1.46 nN. We therefore conclude that superfluid forces are sufficient to approach the
ground state with feedback cooling, so long, of course, as the optomechanical coupling
is large enough that C � n̄ (this was not the case for our experiments).

Alternatively, it is illustrative to consider the cross-over point between feedback
limited phonon occupancy and measurement conditioning limited phonon occupancy.
That is, for what n̄meas does n̄ f eed = n̄meas? Equating Eqs. (32) and (33) and taking the
limit that C � n̄ and G � 1 we find that this occurs when

n̄meas =
1
2

√
n̄
G
. (41)
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Substituting for G using Eq. (38) this becomes

n̄meas =
1
4

(
~Γmn̄

∆Fxxxp

)2/3

≈
1
4

(
kBT

∆FxQxxp

)2/3

(42)

Substituting in the parameters above for our experiments, as well as the peak observed
superfluid force for ∆Fx, gives an indication of the cross-over occupancy at which
feedback imprecision, rather than the residual occupancy from the measurement, would
begin to dominate the final phonon occupancy of our device. This occupancy is 〈〈n̄b〉〉 =

n̄meas + n̄ f eed = 2n̄meas = 0.015, well below the occupancies achieved in any laser
cooling experiment to date. This provides further evidence that the forces reported
here are sufficient for ground state cooling experiments. We note that this result should
be treated as a rough estimate only. An accurate calculation would require a nonlinear
model of how the force saturates as it approaches its peak value, rather than simply
inserting the peak force into Eq. (42). As far as we are aware, such an approach has not
been performed for quantum feedback control of a mechanical oscillator. It would be
considerably more difficult than the linear stochastic master equation approach taken
in Ref. [20], and is well beyond the scope of this paper.
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