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This document provides supplementary information to "Injection locking of an electro-
optomechanical device," https://doi.org/10.1364/OPTICA.4.001196. It contains a detailed
investigation into the effects of the inertial drive on op-tomechanical gain competition
(section 1). We also provide additional details on the phase off-set between the mechanical
oscillations and injection signal (2), the observed instability at large drive amplitudes (3) and

the experimental setup (4 & 5).
https://doi.org/10.6084/m9.figshare.5370979

1. OPTOMECHANICAL MODE COMPETITION

Here we employ the numerical model described in the main
text to investigate mechanical mode competition in an optome-
chanical resonator. Indeed, much like for the optical modes of a
laser, different mechanical modes may compete for gain in an
optomechanical resonator [1]. We show here how the electrical
drive technique introduced introduced in this work and [2] may
be used to permanently reorient the resonator’s phase-space
trajectory in order to, for instance, favor optomechanical gain
for one mechanical mode versus another.

In order to illustrate this phenomenon, we consider for our
simulation an optomechanical resonator with two distinct me-
chanical modes, chosen here to be at 6 MHz (mode 1) and 10
MHz (mode 2). We rewrite Eqs. 4 & 5 of the main text, to account
for the presence of the second mechanical mode:

i = —ga+i(A+G1x1+G2x2)a+AL (S1)
Meff 1 [¥1 + 1% + w,zn,lxl] =hG ‘IX|2 + F4(t) (S2)
Megep [¥2 + T2Xs + Wiy yXo] = MGy laf* + F4(t),  (S3)

where the subscripts 1 and 2 respectively refer to mechanical
modes 1 and 2. Both mechanical modes may have a distinct
effective mass ¢, damping rate I', mechanical frequency w,
and optomechanical coupling rate G, but both couple to the
same intracavity field .

Figure S1 demonstrates the effect of the external capacitive
drive F(d) on the optomechanical gain of each mechanical mode.
The intracavity photon number |a|?> and cavity detuning A in
the simulation are set such that each mechanical mode, taken
individually, is above its regenerative oscillation threshold [3].
However, in the absence of drive (Voc = F; = 0), mode 1

‘wins’ the gain competition and is the only mode to reach re-
generative oscillation, i.e. “phonon-lasing’ (Fig. S1, top panel).
This is visible by the large peaks at wy, 1/27; 2wy,1/27 and
3wyy,1 /27 corresponding respectively to the fundamental me-
chanical frequency and first two higher order harmonics which
appear due to the nonlinearity of the lorentzian optical reso-
nance for large displacements [3]. Note also the absence of any
peak at w,,»/27. Next, the drive force F;(t) is set to the fre-
quency of mode 2 (10 MHz), and its amplitude is progressively
increased (Vac = 0.04;0.05;0.1 V). The simulation results are
plotted Fig. S1, second, third and fourth panels. For the highest
drive voltage, the initial situation is completely reversed, with
the noise peak corresponding to mode 2 now more than 30 dB
above mode 1.

The transition between the two extreme cases is more quanti-
tatively presented in Fig. S2(a), which presents the displacement
amplitude of each mechanical mode in the steady-state, as a
function of drive voltage. The transition from mode 1 to mode 2
having the largest displacement amplitude occurs abruptly, for
0.0425 < Vjc < 0.045 V. Similarly, Fig. S2(b) plots the phase-
space trajectories of mode 1 (blue) and mode 2 (orange), for no
capacitive drive (Vac = 0V, top) and V¢ = 0.1 V (bottom).

At this stage, we seek to verify that the switch from “phonon-
lasing” on mode 1 to mode 2 is indeed due to a change in the
optomechanical gain experienced by both modes, and not to
spurious effects due to the drive itself. In order to do so, we
calculate the work done by the radiation pressure force on each
mode during a mechanical oscillation. The radiation pressure
force acting on mechanical mode i is given by Fr,q,; = 1G; |a|?,
[3] such that the work performed by the intra-cavity optical field
on mode i during one period is given by:
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Fig. S1. Noise power spectra obtained through the FFT

of the simulated normalized cavity output intensity (blue
line). Red line (moving maximum) serves as a guide to the
eye. Simulation parameters are as follows: Qpt = 2 x 10°
(loaded); wy, 1 /2m = 6 MHz; wy,»/2mr = 10 MHz;

I'1/2m = 6 kHz; T,/2r = 10 kHz (mechanical Q of both
modes = 1 x 10%); G /271 = Gp/2m = 1.9 x 108 Hz/m;
Meff1 = Meffp = 5 X 10~ kg; laser power =5 mW; A/27 =
35MHz; dC/dx = 2 x 1077 N/V?; Vpc = 100 V. From top
to bottom panels, Vac = 0;0.04;0.05;0.1 V. Total simulation
time 600 ys. In this simple model, we consider the effect of the
drive F(d) to be identical on both mechanical modes, see Egs.
(52) & (S3). Peaks appearing at e.g. 4 and 16 MHz correspond
to sum- and difference frequency terms between modes 1 and
2. Simulation code available from the authors upon request.

T;
Weaai = [ 1Gilaf x5, (S9)

This work is calculated from our time-domain simulation,
once the system has reached the steady-state. Results for modes
1 and 2 are plotted in Fig. S2(c), as a function of Vac. We
observe that the shift from ‘phonon-lasing” on mode 1 to mode 2
is indeed accompanied by a more than two orders of magnitude
change in the radiation-pressure work received by both modes
(decrease for mode 1; increase for mode 2). This confirms that
the change in dominant mechanical resonance is indeed due to
gain competition between the two modes. We further verify that
the work Wy ; done by the drive force

2

T;
Wdi = /0 F (d) X x,-, (SS)

remains always at least one order of magnitude below the radia-
tion pressure work Wi,q ;.

Finally, we investigate what happens when the electrical
drive is turned off after switching from mode 1 to mode 2.
Does the system decay back to oscillating mainly on mode 1, or
does it exhibit sufficient hysteresis to keep oscillating on mode
2? By replacing the drive term F;(t) in Egs. (S2) and (S3) by
F4(t) H(tstop — t), where H is the Heaviside function, we turn
off the electrical drive at a time #stop once the system has been
switched from mode 1 to mode 2. Even with the drive turned
off, the system maintains regenerative oscillation on mode 2,
indicating that the capacitive drive has effectively reoriented
the resonator along a new stable oscillation trajectory, favoring
optomechanical gain for a different mechanical mode.

The addition of an external driving means to a cavity optome-
chanical system may therefore enable dynamically adjusting
the mechanical lasing mode, serve as a form of ‘non-volatile’
mechanical memory [4] (provided the optical input is not re-
moved), and enable the exploration of normally inaccessible
stable dynamical attractors of the system [5, 6].

2. PHASE OFFSET OF LOCKING AND EDGE-OF-LOCK
EFFECTS

When a mechanical resonator is injection-locked, the phase of its
motion maintains a constant offset with respect to the phase of
the injection signal. The value of this phase offset depends on
the detuning of the injection signal from the natural mechanical
resonance frequency, as mentioned in the main text. We per-
formed numerical simulations to investigate this dependence in
each of the quasi-lock and continuous edge-of-lock regimes.

Our simulations consisted in solving the coupled differen-
tial equations that govern the time evolution of the optical and
mechanical degrees of freedom (Eqs. 4 & 5 of the main text).
These were solved using an ODE solver (MATLAB) to deter-
mine the dynamics of the optomechanical system over a time
period on the order of ~1000 us, with a few million time steps
—corresponding to an average nanosecond-range time increment
between successive points. Note that these simulations, even
though simplified (they do not include thermo-optic effects or
a random thermal force for instance), are nevertheless able to
accurately reproduce our experimental observations (see Fig. 5
of the main text). This holds for both the quasi-lock and continu-
ous regimes. The simulation code is available from the authors
upon request.

Our numerical modelling reveals that the dependency of the
phase offset on the frequency of the injection tone is qualitatively
different between the two regimes, as shown in Fig. S3. Figure
S3(a) plots the phase offset between electrical drive and locked
mechanical oscillator, as function of drive frequency, for simu-
lation parameters corresponding to the quasi-lock regime. The
locking here spans approximately from 8.920 MHz to 8.938 MHz,
corresponding to a locking range of 18 kHz. The phase offset
is in very good agreement to that expected from the theory of
an injection-locked tank circuit [7]. The phase offset spans the
expected [—7/2; 7t/2] range, with zero phase offset in the center
of the lock range, and an offset approaching +7/2 at the edges
of the lock range [7].

In striking contrast to the quasilock case, in the continuous
regime the phase offset is bound within [—7; 0], with a non-
symmetric relationship of the phase-offset with respect to the
center of the locking range. Another unique feature of this
regime is the apparently ‘instantaneous’ jump of the phase offset
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Fig. S2. (a) Simulated steady-state mechanical displacement amplitude of mode 1 (blue) and mode 2 (orange), as a function of
AC drive voltage. (b) Phase-space trajectories of mode 1 (blue) and mode 2 (orange), for no capacitive drive (Vac = 0V, top) and
Vac = 0.1V (bottom). (c) Work W4 performed by the intra-cavity optical field on mode 1 (blue) and mode 2 (orange) during one
oscillation period. This corresponds to a net power transferred from the light field to the lasing mechanical mode on the order of a
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from —7t to —7t/2 close to the lower end of the locking range
(8.913 MHz). Near the edge of the locking range, the phase offset
oscillates in time around a steady-state value, as shown in Fig.
S4(b). This oscillation is responsible for the increased uncertainty
in defining the value of the phase offset, as evidenced by the
growing error bars.

We now look at the behaviour of the phase offset in the
time domain, for a drive frequency just on the edge of the lock
range. This analysis reveals a qualitatively different mechanism
through which the locking is lost in both quasi-lock and con-
tinuous regimes. Figure S4 plots the phase offset between the
mechanical oscillator position x and the injection signal as a
function of time. In Fig. S4(a) the phase offset is shown for a
drive frequency just outside the lock range, corresponding to a
drive at 8.940 MHz in Fig. S3(a). Since this drive is outside of the
locking range, the phase offset is no longer constant over time.
Nevertheless, the phase offset is maintained at 7r/2 modulo 27
for sustained periods of time (horizontal sections of the curve),
before incurring a 27t phase slip, and locking again. The mechan-
ical oscillator therefore alternates between periods of time where
it is locked to the drive, and periods where it is not. This regime
is therefore named the quasi-lock or phase-slip regime [7]. As the
drive frequency is further moved away from the edge of the
locking range, the fraction of the time the oscillator is locked ver-
sus slipping keeps diminishing. This is the mechanism whereby
lock is lost in the quasilock regime.

In contrast, Fig. S4(b) plots the phase offset in the continuous
regime for a drive frequency just on the edge of the lock range
(corresponding to the rightmost point in Fig. S3(b)). The simu-
lation shows an initially unlocked oscillator which locks after
four 27t phase slips. After locking, no further phase-slips occur.
Nevertheless, the phase offset oscillates about the value of 87
(corresponding to 0 mod 27t in Fig. S3(b)). The further the drive
frequency is moved away from the center of the lock range, the
larger these phase oscillations become (as illustrated Fig. S3(b)),
until lock is lost. This analysis therefore underlines the qualita-
tive differences between the quasi-lock and continuous regimes,
both in terms of the phase offset inside the locking range, as
well as the mechanism whereby the oscillator falls out of lock.
Further research must be done to investigate other differences
between these regimes, and uncover the precise mechanisms
behind such qualitatively different behaviour.

3. INSTABILITY OF LARGE DRIVES

As shown in the main text, we attempt to tune the regenera-
tive oscillation frequency across a 71 kHz locking range using
a Vac = 5 V drive. However, we find that when the frequency
of this strong drive is set close to the mechanical resonance
frequency, the optical cavity is shifted out of resonance and
regenerative oscillations cease. On the other hand, when the
frequency of the drive is set away from resonance, regenera-
tive oscillations remain stable and successfully lock to the drive
tone. We suspect that this occurs due to a combination of large
amplitude mechanical oscillations when driven near resonance
along with thermal effects in the silica microtoroid [8]. Silica
has an appreciable thermo-optic coefficient, which describes
the change in its refractive index with temperature. In effect,
the optical resonance frequency shifts as the optical power in-
side the cavity is increased, resulting in optical bi-stability [9].
These shifts are routinely observed in the experiment through
frequency scans of the optical mode, which produce a character-
istic triangular shape [10]. When driven near resonance to high
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Fig. S3. Phase offset between the injection signal and the
locked oscillations as a function of the drive frequency. The
phase offset is measured between the electrical drive and the
resonator position x, once the system has reached its steady-
state in the simulation. These were numerically modelled in
the a) quasilock and b) continuous regimes. Note how the be-
haviour of the phase offset is qualitatively different between
the two regimes.

amplitudes, the mechanical oscillations can sufficiently shift the
optical resonance away from the laser frequency (Gx > «) such
that the optical power inside the cavity drops significantly. This
results in a run-away effect where the silica cools as the reso-
nance frequency continues to shift further away from the laser
frequency until it reaches its equilibrium temperature, where
the laser frequency is completely detuned from resonance.

4. ELECTRIC PROBE SETUP

Electrical contact with our device is established through firmly
pressing ultrasharp tungsten probes with tip radii of 1 ym onto
the contact pads at the center of the resonator. We observe
that, over time, the probes cause wear to the pads with each
application, particularly when a DC voltage is applied across
the electrodes. Tungsten is a very porous material, and oxide
tends to build up on and within the probe. This accumulation
of oxide can create a high contact resistance between the probe
and the pad, with the potential for an applied voltage to cause
arcing [11], which we suspect is the cause of the observed wear.
This problem may be avoided by using beryllium copper (BeCu)
probe tips. These are softer than tungsten tips and are effec-
tively polished when pressed against a surface. As the BeCu
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Fig. S4. Phase offset as a function of time between the me-
chanical oscillator position x and the injection signal. a) Simu-
lated phase offset in the quasilock regime for a drive frequency
just outside the lock range (8.940 MHz). The quasi-locking
regime corresponds to the ‘phase-slip’ regime described by
Razavi [7], where the oscillator is being held at a phase offset
of 71/2 modulo 27 for periods of time, before incurring a 27
phase slip. b) Phase offset in the continuous regime for a drive
frequency just on the edge of the lock range (8.944 MHz - right-
most point in Fig. S3(b)) . The green dotted line corresponds to
a phase offset of 0 modulo 27t, shown in Fig. S3(b).

probe tip slides, the scrubbing action leaves the tip surface clean,
maintaining its low contact resistance with the gold pads [11].

5. FIBRE TAPER STABILISATION

All measurements shown in the main text are performed with
the tapered section of the fibre brought into contact with the
top of the silica microtoroid. This is done out of necessity, as
we are unable to achieve stable coupling of the optical cavity
to the fibre while simultaneously applying a DC voltage to the
electrodes and keeping the fibre positioned in proximity to the
device. Invariably, the fibre drifts and is pulled towards the
device in timescales on the order of one minute, likely due to
polarization of the fibre and a resulting attractive force. With the
voltage switched off, however, we are able to take measurements
to extract the mechanical linewidth without the fibre touching.
This comparison reveals that bringing the fibre into contact with
the device only reduces the mechanical quality factor by a fac-
tor of ~ 3. Fortunately, the presence of the fibre on top of the
microtoroid does not severely damp the radial motion of the me-

chanical resonator. With the fibre in contact, stable regenerative
oscillations are maintained for hours.

For future devices, there are a number of ways in which stable
optical coupling can be achieved without bringing the fibre into
contact with the microtoroid. For instance, separate support
structures such as nanoforks or support pads can be fabricated
to stabilize the fibre [10, 12]. Alternatively, the tapered fibre can
be removed completely and integrated waveguides for optical
coupling can be used instead [13, 14].
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