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We report on miniature GaAs disk optomechanical resonators vibrating in air in the radiofrequency
range. The flexural modes of the disks are studied by scanning electron microscopy and optical
interferometry, and correctly modeled with the elasticity theory for annular plates. The mechanical
damping is systematically measured, and confronted with original analytical models for air
damping. Formulas are derived that correctly reproduce both the mechanical modes and the
damping behavior, and can serve as design tools for optomechanical applications in fluidic
environment. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729014]

Optomechanics studies the coupling of light to mechani-
cal motion, with applications in the quantum-optical control
of mechanical systems, in optical-mechanical sensing or in
metrology.'™ While many recent developments in optome-
chanics have striven for reduced optical and mechanical dis-
sipation to unravel quantum phenomena,*> more dissipative
regimes are also of interest. For example, the operation of
optomechanical systems in air or in a liquid, where their dis-
sipation is increased, calls for attention if these systems are
to serve as generic force or mass sensors.® In complex fluids,
rheological studies employing miniature mechanical resona-
tors’ can also benefit from the unsurpassed sensitivity of
optomechanical systems, provided that their interaction with
the fluid is controlled. Miniature whispering-gallery re-
sonators in the form of silica toroids® and semiconductor
disks”™!' offer an ultra-large optomechanical coupling,
which makes them systems of choice for optomechanics
experiments. However, the resonators lack simple models to
describe their mechanical properties: their mechanical modes
are generally computed by numerical methods and studies of
their mechanical damping in a fluid are scarce.

In this letter, we advance towards an understanding of
the mechanics of optomechanical disk structures operated in
a fluid. We investigate the mechanical behavior of gallium-
arsenide (GaAs) disk resonators vibrating in air, by perform-
ing scanning electron microscope (SEM) and optical fiber
interferometric detection of their mechanical motion. We
show that the elasticity theory of annular plates describes
well the disk’s mechanical modes and allows deriving effec-
tive analytical expressions for their eigenfrequencies. We de-
velop a simple model for air damping of the disk’s motion,
where Stokes spheres are attached to a vibrating disk. The
model is shown to satisfactorily reproduce experimental
results on a large set of measured resonators. In the investi-
gated situation, mechanical damping of GaAs disks appears
to be dominated by squeeze-film and air damping
contributions.

We employ a semi-insulating GaAs substrate on which
we grow an epitaxial GaAs 500 nm buffer layer, a 1.5 um
AlygGagp,As layer and finally a 200nm GaAs top layer.
GaAs-based resonators have shown a low-level of mechanical
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dissipation in previous work.”'*1%13 Here, disks of different
diameter (10 to 50 um) are defined by e-beam lithography
with a negative resist, and then fabricated in a two-step wet
etching process: first a non-selective etch of GaAs/AlGaAs
and then a selective under-etch of the AlGaAs sacrificial
layer."* The SEM picture of a GaAs disk suspended by this
process over an AlGaAs pedestal is shown in Fig. 1(a), to-
gether with its schematic vertical section in Fig. 1(b). These
disks possess an important variety of mechanical modes:
here we will focus on flexural modes. We first test the theory
of elastic annular plates'” as a means to obtain a valid
description of these flexural modes taking a (b) (see Fig.
1(b)) as the annular plate external (internal) radius. Assum-
ing perfect rotational invariance, the modes for the disk flex-
ural motion are represented by an out-of-plane vibration
profile wp p(1,0,t) = Wp p(1,0)cos(wp pmt) where P and M are
the radial and azimuthal numbers. The spatial mode profile
isWp nm(1,0) = cos(MO)[AnIm(kp mr) + By Y m(kp mr) + Cuvlm
(kP’MI')-f—DMKM(kP’MI')] with JM and YM (IM and KM) the
M-order (modified) Bessel functions of first and second kind,
respectively. The wave vector k relates to the angular me-
chanical frequency by K= 12pw2(1 — VA)/(E) with p the
material density, v the Poisson ratio, E the Young’s modulus,
and t the disk thickness. The mechanical frequency and con-
stants A, B, C, and D are found by imposing clamping condi-
tions for the disk on the pedestal (r=»5) and free vibration
conditions at the disk end (r =a). Fig. 1(c) shows the motion
profile of a (P=0, M = 1) flexural mode for a clamped annu-
lar plate described by this approach.

In our experiments, we excite the mechanical modes of
the disks by ultrasonic piezoelectric means: the sample is
glued on a piezo-plate driven by an AC voltage. Sweeping
the frequency while monitoring the disk motion reveals the
mechanical resonances of the system. The disk motion is first
analyzed in the SEM chamber (vacuum 10 ~5 mbar).
Fig. 1(d) shows for example the resonant excitation of the
lowest frequency disk flexural mode, identified as being the
(P=0, M=1) mode predicted by elasticity theory. This in
situ SEM excitation technique offers the advantage of
directly imaging the vibration profile'®!” but obtaining a de-
tectable motion requires driving the mechanical resonator

© 2012 American Institute of Physics
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FIG. 1. Flexural motion of micron-sized GaAs disk resonators. (a) SEM
side-view of a GaAs disk suspended over an AlGaAs pedestal. (b) Sche-
matics of the disk geometry with relevant dimensions. (c) Vibration profile
of a (P=0, M= 1) flexural mode represented in cylindrical coordinates. (d)
SEM side-view of the GaAs disk shown in (a), vibrating resonantly on its
(P=0, M =1) flexural mode.

with a large piezo power, where the disk mechanical
response becomes non-linear. To work in a linear regime,
the disk motion is excited at low power and optically meas-
ured with a fiber interferometric technique.'®>° To this pur-
pose, a single-mode optical fiber for A= 1.55 um is cleaved
with a straight angle and positioned over the disk top surface
at a distance shorter than the Rayleigh distance. Monochro-
matic laser light is injected into the fiber, exits the fiber out-
put and circulates in the multiple-cavity system formed by
the sample substrate, the disk and the fiber end. This light is
modulated by the disk flexural vibration, collected back by
the fiber and sent on a photodetector to allow vibration
detection. Transfer matrix simulations show that interfer-
ences between the disk and the substrate dominate the behav-
ior of the multiple-cavity system, and that the cavity formed
between the disk and the fiber end plays a second-order role
in the interferometer. The schematic experimental set-up is
shown in Fig. 2(a). A typical mechanical spectrum obtained
with this fiber-technique is shown in Fig. 2(b), when sweep-
ing the piezo-actuation frequency with the output of a
network analyzer and collecting the photodetector signal into
its input port. The shape of the obtained mechanical reso-
nance is correctly fitted by the damped harmonic oscillator
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FIG. 2. (a) Schematics of the fiber-interferometer set-up. FOC stands for
fiber optical circulator, PD for PhotoDetector. (b) Vibrational spectrum on a
GaAs disk flexural mode. This spectrum is obtained by dividing the raw
motional spectrum, obtained when placing the fiber above the disk periph-
ery, by a reference spectrum for piezo-motion obtained with the fiber placed
above the rigid disk pedestal. (c) The calculated effective parameter /10,02
entering the effective formula for the (P =0, M = 0) mode frequency, and its
dependence on b/a.

model, which predicts a motional amplitude response
|x(w)| = [1/(@m> =) + (Tw)?*]"? where w,, is the mechani-
cal angular eigenfrequency and I" the mechanical damping
factor, with the mechanical Q factor given by Q= w,,/T.
The symmetric shape of the resonance indicates a linear me-
chanical response, as expected for an excitation power 20 dB
lower than in the SEM experiment. The linear behavior
allows using the position and width of the resonance to ana-
lyze the disk elastic and dissipative mechanical properties.
Let us first focus on measured mechanical frequencies
fr, = /27 In the theory of annular plates presented above,
we cast the mechanical frequency fpyy of a flexural (P,M)
mode in the simple form:

/12
fo =—2H

2n M

with a dimensionless parameter /lp’M2 defined by AP,M2
:kP,Mzaz, which depends on (P,M) and can be shown to
depend on the disk inner (b) and outer (@) radius only
through their ratio b/a. Hereafter, we will focus on (P=0,
M =0) flexural modes, as they possess the highest symme-
try. Fig. 2(c) plots the evolution of 120,0 as a function of b/a.
Each point in this curve is obtained by finding the root of the
implicit equation obtained from mechanical boundary condi-
tions. This equation is invariant for geometry changes that
let b/a invariant. Along with Eq. (1), Fig. 2(c) allows evalu-
ating by hand the mechanical frequency for the (P=0,
M=0) flexure of an arbitrary elastic disk. Furthermore, let
us note that the quantity Ao o°(a—b)*/a*, which only depends
on the parameter b/a, barely varies (=10%) when b/a varies
from O to 0.8 (not shown here). This implies that at a first
level of description, the dependence of fj is well captured
by a simple dependence in 1/(a—b)?, reminiscent of the usual
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112 dependence for the flexural motion of an elastic lever of
length 1.*' This is the picture that we will employ below.

Fig. 3(a) shows the f; frequency measured in the fiber
interferometer on a set of 24 disks. The dimensions of the
disks are measured by combining optical microscope and
SEM inspection, resulting in an estimated error bar of
*£200nm in the outer and inner diameter of the rotation-
invariant representation of Fig. 1(b). The outer diameter a
varies between 12 and 23 um, the inner radius b between 5
and 16 ym, the under-etch distance (a—b) between 6 and
7 um and the ratio b/a between 0.44 and 0.72. The measured
frequency varies between 2.3 and 3.2 MHz, and decreases
for increasing values of (a—b). The two solid lines in Fig.
3(a) are obtained from the above effective -elasticity
approach where the frequency scales with the inverse of
(afb)z, using the two bounding values of /10!02(41719)2#12 cor-
responding to (b/a) =0.44 and 0.72. GaAs is treated as an
isotropic elastic material with E=285.9GPa, r=0.31,
p=>5316kg/m’, and we use a disk thickness t of 200nm
inferred from in-situ control during the epitaxial growth. The
agreement with data shows that this effective analytical
theory correctly evaluates the frequency of a GaAs disk
flexural mode, and reproduces its dependence on geometric
dimensions. For a finer level of agreement, the full depend-
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FIG. 3. (a) Mechanical frequency of the (P =0, M =0) flexural mode as a
function of the under-etch (¢—b). Empty circles are measurements on a set
of 24 disks. Dashed lines are two bounding theoretical predictions obtained
from an effective elastic theory where the frequency scales with 1/(a—b)>.
(b) Mechanical Q factor of the (P=0, M =0) mode as a function of (a—b).
Empty circles are measurements on 24 disks. The two dashed lines are
obtained by combining analytical models for air damping and squeeze-film
damping with the effective formulas for the mechanical frequency.
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ence of the mechanical frequency on both @ and b can of
course be employed, or finite element method (FEM) simula-
tions taking the disk pedestal into account.’” However, the
effective analytical approach tested positively here provides
a perfect tool to understand the disk elastic properties, and a
starting point to model its interaction with its air environ-
ment, as we will see below.

Figure 3(b) reports the mechanical Q factor for the
(P =0, M =0) mode of the disks measured in the interferom-
eter. The typical Q is of a few tens and decreases for increas-
ing under-etch (a¢—b). To interpret these results, clamping
losses are first evaluated numerically in FEM simulations, by
adapting a perfectly matched-layer approach to the problem
of acoustic radiation of the disk into the support.*> For the
disks and modes investigated here, these numerical simula-
tions lead to clamping Q factors typically between 10" and
10°. This is a negligible contribution in the present experi-
ments; hence, we consider next the dissipative effects associ-
ated to the presence of air around the disks. These effects are
twofold: air damping of the flexural motion, which would be
present even without substrate, and squeeze film damping,
due to the presence of the substrate directly under the disk.
When the Reynolds number for the airflow is low, a model
for air damping of thin cantilevers consists in attaching vir-
tual Stokes spheres of radius R along the lever and summing
the spheres contributions.>>** Here we develop a model for
the disk flexural motion, considering the dynamic viscous
coefficient for a sphere oscillating at angular frequency w,,
(Ref. 26): p=6mnR(1 +R/d). In this expression, o is the
boundary layer thickness given by \/ 2n/paowm). With
n=1.8 10 °Pa. s and pa=12kg m ™ for the air dynamic
viscosity and density, ¢ is of the order of the lateral dimen-
sions of the disks investigated here. If the sphere radius R is
commensurable with the disk radius, R/6 cannot be
neglected, in contrast to the case of kHz cantilevers. The
energy Uy dissipated per vibration cycle is obtained by
integrating the work of the dissipative force —fdw ¢/dt on
the disk surface and averaging over a cycle leading
Uy = 6m00m(1/R + 1/8) [[aise tW?0,0(r,0) drd0, where o, is
the mechanical angular frequency. This energy is compared
to the mechanical energy stored in the mechanical mode
U, = 0’ mpt/2 ”disk rW20,0(r,0) drdf, and we finally obtain
the quality factor Q =27Uy/Uq

Pty 1

Qair -

on 1 1
RTs

Let us now take R =(a—b)/2 in the spirit of the cantilever
case, where satisfactory results are obtained with a sphere di-
ameter equal to the cantilever width.?’ In this case, our
derived Q,;, decreases for increasing (a—b) as observed in
the measurements, but varies between 100 and 170 for the
disks investigated here, above measured values. This means
that, according to our model, air damping indeed contributes
to the dissipation of the disks flexural motion, but only
accounts for part of it. We consider next the presence of the
nearby substrate at a distance h=1.5 um below the disk,
which produces squeeze-film effects. In a simplified
approach, we approximate the (P=0, M =0) flexural mode
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of the disk by the motion of a rigid annular plate in a direc-
tion normal to the substrate. An analytical treatment of
squeeze-film mechanisms, in the relevant limit of small
Reynolds number and isothermal squeezed gas,27 leads us to
a Q factor quueeze = wm/rsqueeze where

3na* N2 11— (bla)>
quueeze - ﬂ 14+ | = + (7/61) )
2/ " \a) " In(b/a)

To obtain satisfactory quantitative results with this formula,
an effective over-length for the plate lateral dimension
(a—b) must be considered to account for border effects. For
the small Knudsen number in our study, we adopt an approx-
imate effective over-length of 8 h/3r inferred from previous
works on moving plates.27’28 This leads to Qgquecze Values
that decrease for increasing (¢—b) and that are about 20%
above the measured Q values. This quantitative discrepancy
vanishes if we now sum the two contributions for both air
damping and squeeze-film damping. To this purpose, we first
divide the air damping contribution by a factor two, in order
to only account for air damping on the upper side of the disk.
Indeed the damping on lower side of the disk is fully
included in the squeeze-film contribution. Finally, the two
dashed lines in Fig. 3(b) correspond to 1/Q=1/2Q.;+ 1/
Qsqueeze for the two bounding curves for w,, in Fig. 3(a).
These dashed lines satisfactorily bound the observed Qs,
showing the validity of the employed effective models for
air and squeeze-film damping in our experimental situation.
An exhaustive systematic study as a function of the disk and
surrounding gas parameters is beyond the scope of the pres-
ent article, but will allow understanding more precisely the
limits of validity of these models.

In summary, we study experimentally the elastic and
dissipative mechanical behavior of miniature GaAs disks
vibrating in air. We derive effective analytical models that
satisfactorily explain the observed vibrational mode shape,
the measured mechanical frequency and the observed damp-
ing. The latter appears to originate from both squeeze-film
damping and damping by the surrounding air. As compared
to numerical simulations, this analytical modeling offers a
direct insight into the parameters that need to be controlled
when using optomechanical disk resonators in a fluid. On a
more general level, optomechanical disk resonators could
become a model system for investigating fluid-structure

Appl. Phys. Lett. 100, 242105 (2012)

interactions, thanks to their high geometric symmetry and
exquisite optomechanical response to external forces.
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