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We report on miniature GaAs disk optomechanical resonators vibrating in air in the radiofrequency

range. The flexural modes of the disks are studied by scanning electron microscopy and optical

interferometry, and correctly modeled with the elasticity theory for annular plates. The mechanical

damping is systematically measured, and confronted with original analytical models for air

damping. Formulas are derived that correctly reproduce both the mechanical modes and the

damping behavior, and can serve as design tools for optomechanical applications in fluidic

environment. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729014]

Optomechanics studies the coupling of light to mechani-

cal motion, with applications in the quantum-optical control

of mechanical systems, in optical-mechanical sensing or in

metrology.1–3 While many recent developments in optome-

chanics have striven for reduced optical and mechanical dis-

sipation to unravel quantum phenomena,4,5 more dissipative

regimes are also of interest. For example, the operation of

optomechanical systems in air or in a liquid, where their dis-

sipation is increased, calls for attention if these systems are

to serve as generic force or mass sensors.6 In complex fluids,

rheological studies employing miniature mechanical resona-

tors7 can also benefit from the unsurpassed sensitivity of

optomechanical systems, provided that their interaction with

the fluid is controlled. Miniature whispering-gallery re-

sonators in the form of silica toroids8 and semiconductor

disks9–11 offer an ultra-large optomechanical coupling,

which makes them systems of choice for optomechanics

experiments. However, the resonators lack simple models to

describe their mechanical properties: their mechanical modes

are generally computed by numerical methods and studies of

their mechanical damping in a fluid are scarce.

In this letter, we advance towards an understanding of

the mechanics of optomechanical disk structures operated in

a fluid. We investigate the mechanical behavior of gallium-

arsenide (GaAs) disk resonators vibrating in air, by perform-

ing scanning electron microscope (SEM) and optical fiber

interferometric detection of their mechanical motion. We

show that the elasticity theory of annular plates describes

well the disk’s mechanical modes and allows deriving effec-

tive analytical expressions for their eigenfrequencies. We de-

velop a simple model for air damping of the disk’s motion,

where Stokes spheres are attached to a vibrating disk. The

model is shown to satisfactorily reproduce experimental

results on a large set of measured resonators. In the investi-

gated situation, mechanical damping of GaAs disks appears

to be dominated by squeeze-film and air damping

contributions.

We employ a semi-insulating GaAs substrate on which

we grow an epitaxial GaAs 500 nm buffer layer, a 1.5 lm

Al0.8Ga0.2As layer and finally a 200 nm GaAs top layer.

GaAs-based resonators have shown a low-level of mechanical

dissipation in previous work.9,10,12,13 Here, disks of different

diameter (10 to 50 lm) are defined by e-beam lithography

with a negative resist, and then fabricated in a two-step wet

etching process: first a non-selective etch of GaAs/AlGaAs

and then a selective under-etch of the AlGaAs sacrificial

layer.14 The SEM picture of a GaAs disk suspended by this

process over an AlGaAs pedestal is shown in Fig. 1(a), to-

gether with its schematic vertical section in Fig. 1(b). These

disks possess an important variety of mechanical modes:

here we will focus on flexural modes. We first test the theory

of elastic annular plates15 as a means to obtain a valid

description of these flexural modes taking a (b) (see Fig.

1(b)) as the annular plate external (internal) radius. Assum-

ing perfect rotational invariance, the modes for the disk flex-

ural motion are represented by an out-of-plane vibration

profile wP,M(r,h,t)¼WP,M(r,h)cos(xP,Mt) where P and M are

the radial and azimuthal numbers. The spatial mode profile

isWP,M(r,h)¼ cos(Mh)[AMJM(kP,Mr)þBMYM(kP,Mr)þCMIM

(kP,Mr)þDMKM(kP,Mr)] with JM and YM (IM and KM) the

M-order (modified) Bessel functions of first and second kind,

respectively. The wave vector k relates to the angular me-

chanical frequency by k4¼ 12qx2(1� �2)/(Et2) with q the

material density, � the Poisson ratio, E the Young’s modulus,

and t the disk thickness. The mechanical frequency and con-

stants A, B, C, and D are found by imposing clamping condi-

tions for the disk on the pedestal (r¼ b) and free vibration

conditions at the disk end (r¼ a). Fig. 1(c) shows the motion

profile of a (P¼ 0, M¼ 1) flexural mode for a clamped annu-

lar plate described by this approach.

In our experiments, we excite the mechanical modes of

the disks by ultrasonic piezoelectric means: the sample is

glued on a piezo-plate driven by an AC voltage. Sweeping

the frequency while monitoring the disk motion reveals the

mechanical resonances of the system. The disk motion is first

analyzed in the SEM chamber (vacuum 10�5 mbar).

Fig. 1(d) shows for example the resonant excitation of the

lowest frequency disk flexural mode, identified as being the

(P¼ 0, M¼ 1) mode predicted by elasticity theory. This in
situ SEM excitation technique offers the advantage of

directly imaging the vibration profile16,17 but obtaining a de-

tectable motion requires driving the mechanical resonator
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with a large piezo power, where the disk mechanical

response becomes non-linear. To work in a linear regime,

the disk motion is excited at low power and optically meas-

ured with a fiber interferometric technique.18–20 To this pur-

pose, a single-mode optical fiber for k¼ 1.55 lm is cleaved

with a straight angle and positioned over the disk top surface

at a distance shorter than the Rayleigh distance. Monochro-

matic laser light is injected into the fiber, exits the fiber out-

put and circulates in the multiple-cavity system formed by

the sample substrate, the disk and the fiber end. This light is

modulated by the disk flexural vibration, collected back by

the fiber and sent on a photodetector to allow vibration

detection. Transfer matrix simulations show that interfer-

ences between the disk and the substrate dominate the behav-

ior of the multiple-cavity system, and that the cavity formed

between the disk and the fiber end plays a second-order role

in the interferometer. The schematic experimental set-up is

shown in Fig. 2(a). A typical mechanical spectrum obtained

with this fiber-technique is shown in Fig. 2(b), when sweep-

ing the piezo-actuation frequency with the output of a

network analyzer and collecting the photodetector signal into

its input port. The shape of the obtained mechanical reso-

nance is correctly fitted by the damped harmonic oscillator

model, which predicts a motional amplitude response

jx(x)j ¼ [1/(xm
2�x2)þ (Cx)2]1/2 where xm is the mechani-

cal angular eigenfrequency and C the mechanical damping

factor, with the mechanical Q factor given by Q¼xm/C.

The symmetric shape of the resonance indicates a linear me-

chanical response, as expected for an excitation power 20 dB

lower than in the SEM experiment. The linear behavior

allows using the position and width of the resonance to ana-

lyze the disk elastic and dissipative mechanical properties.

Let us first focus on measured mechanical frequencies

fm¼ xm/2p. In the theory of annular plates presented above,

we cast the mechanical frequency fP,M of a flexural (P,M)

mode in the simple form:

fP;M ¼
k2

P;M

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

12qð1� �2Þ

s
t

a2
(1)

with a dimensionless parameter kP,M
2 defined by kP,M

2

¼ kP,M
2a2, which depends on (P,M) and can be shown to

depend on the disk inner (b) and outer (a) radius only

through their ratio b/a. Hereafter, we will focus on (P¼ 0,

M¼ 0) flexural modes, as they possess the highest symme-

try. Fig. 2(c) plots the evolution of k2
0,0 as a function of b/a.

Each point in this curve is obtained by finding the root of the

implicit equation obtained from mechanical boundary condi-

tions. This equation is invariant for geometry changes that

let b/a invariant. Along with Eq. (1), Fig. 2(c) allows evalu-

ating by hand the mechanical frequency for the (P¼ 0,

M¼ 0) flexure of an arbitrary elastic disk. Furthermore, let

us note that the quantity k0,0
2(a�b)2/a2, which only depends

on the parameter b/a, barely varies (610%) when b/a varies

from 0 to 0.8 (not shown here). This implies that at a first

level of description, the dependence of f0,0 is well captured

by a simple dependence in 1/(a�b)2, reminiscent of the usual

FIG. 1. Flexural motion of micron-sized GaAs disk resonators. (a) SEM

side-view of a GaAs disk suspended over an AlGaAs pedestal. (b) Sche-

matics of the disk geometry with relevant dimensions. (c) Vibration profile

of a (P¼ 0, M¼ 1) flexural mode represented in cylindrical coordinates. (d)

SEM side-view of the GaAs disk shown in (a), vibrating resonantly on its

(P¼ 0, M¼ 1) flexural mode.

FIG. 2. (a) Schematics of the fiber-interferometer set-up. FOC stands for

fiber optical circulator, PD for PhotoDetector. (b) Vibrational spectrum on a

GaAs disk flexural mode. This spectrum is obtained by dividing the raw

motional spectrum, obtained when placing the fiber above the disk periph-

ery, by a reference spectrum for piezo-motion obtained with the fiber placed

above the rigid disk pedestal. (c) The calculated effective parameter k0,0
2

entering the effective formula for the (P¼ 0, M¼ 0) mode frequency, and its

dependence on b/a.
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1/l2 dependence for the flexural motion of an elastic lever of

length l.21 This is the picture that we will employ below.

Fig. 3(a) shows the f0,0 frequency measured in the fiber

interferometer on a set of 24 disks. The dimensions of the

disks are measured by combining optical microscope and

SEM inspection, resulting in an estimated error bar of

6200 nm in the outer and inner diameter of the rotation-

invariant representation of Fig. 1(b). The outer diameter a
varies between 12 and 23 lm, the inner radius b between 5

and 16 lm, the under-etch distance (a�b) between 6 and

7 lm and the ratio b/a between 0.44 and 0.72. The measured

frequency varies between 2.3 and 3.2 MHz, and decreases

for increasing values of (a�b). The two solid lines in Fig.

3(a) are obtained from the above effective elasticity

approach where the frequency scales with the inverse of

(a�b)2, using the two bounding values of k0,0
2(a�b)2/a2 cor-

responding to (b/a)¼ 0.44 and 0.72. GaAs is treated as an

isotropic elastic material with E¼ 85.9 GPa, �¼ 0.31,

q¼ 5316 kg/m3, and we use a disk thickness t of 200 nm

inferred from in-situ control during the epitaxial growth. The

agreement with data shows that this effective analytical

theory correctly evaluates the frequency of a GaAs disk

flexural mode, and reproduces its dependence on geometric

dimensions. For a finer level of agreement, the full depend-

ence of the mechanical frequency on both a and b can of

course be employed, or finite element method (FEM) simula-

tions taking the disk pedestal into account.5 However, the

effective analytical approach tested positively here provides

a perfect tool to understand the disk elastic properties, and a

starting point to model its interaction with its air environ-

ment, as we will see below.

Figure 3(b) reports the mechanical Q factor for the

(P¼ 0, M¼ 0) mode of the disks measured in the interferom-

eter. The typical Q is of a few tens and decreases for increas-

ing under-etch (a�b). To interpret these results, clamping

losses are first evaluated numerically in FEM simulations, by

adapting a perfectly matched-layer approach to the problem

of acoustic radiation of the disk into the support.22 For the

disks and modes investigated here, these numerical simula-

tions lead to clamping Q factors typically between 104 and

105. This is a negligible contribution in the present experi-

ments; hence, we consider next the dissipative effects associ-

ated to the presence of air around the disks. These effects are

twofold: air damping of the flexural motion, which would be

present even without substrate, and squeeze film damping,

due to the presence of the substrate directly under the disk.

When the Reynolds number for the airflow is low, a model

for air damping of thin cantilevers consists in attaching vir-

tual Stokes spheres of radius R along the lever and summing

the spheres contributions.23–25 Here we develop a model for

the disk flexural motion, considering the dynamic viscous

coefficient for a sphere oscillating at angular frequency xm

(Ref. 26): b¼ 6pgR(1þR/d). In this expression, d is the

boundary layer thickness given by H(2g/qaxm). With

g¼ 1.8 10�5 Pa. s and qa¼ 1.2 kg m�3 for the air dynamic

viscosity and density, d is of the order of the lateral dimen-

sions of the disks investigated here. If the sphere radius R is

commensurable with the disk radius, R/d cannot be

neglected, in contrast to the case of kHz cantilevers. The

energy Ud dissipated per vibration cycle is obtained by

integrating the work of the dissipative force �bdw0,0/dt on

the disk surface and averaging over a cycle leading

Ud¼ 6pgxm(1/Rþ 1/d) $$disk rW2
0,0(r,h) drdh, where xm is

the mechanical angular frequency. This energy is compared

to the mechanical energy stored in the mechanical mode

Us¼x2
mqt/2 $$disk rW2

0,0(r,h) drdh, and we finally obtain

the quality factor Q¼ 2pUs/Ud

Qair ¼
qtxm

6g
1

1

R
þ 1

d

:

Let us now take R¼ (a�b)/2 in the spirit of the cantilever

case, where satisfactory results are obtained with a sphere di-

ameter equal to the cantilever width.25 In this case, our

derived Qair decreases for increasing (a�b) as observed in

the measurements, but varies between 100 and 170 for the

disks investigated here, above measured values. This means

that, according to our model, air damping indeed contributes

to the dissipation of the disks flexural motion, but only

accounts for part of it. We consider next the presence of the

nearby substrate at a distance h¼ 1.5 lm below the disk,

which produces squeeze-film effects. In a simplified

approach, we approximate the (P¼ 0, M¼ 0) flexural mode

FIG. 3. (a) Mechanical frequency of the (P¼ 0, M¼ 0) flexural mode as a

function of the under-etch (a�b). Empty circles are measurements on a set

of 24 disks. Dashed lines are two bounding theoretical predictions obtained

from an effective elastic theory where the frequency scales with 1/(a�b)2.

(b) Mechanical Q factor of the (P¼ 0, M¼ 0) mode as a function of (a�b).

Empty circles are measurements on 24 disks. The two dashed lines are

obtained by combining analytical models for air damping and squeeze-film

damping with the effective formulas for the mechanical frequency.

242105-3 Parrain et al. Appl. Phys. Lett. 100, 242105 (2012)
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of the disk by the motion of a rigid annular plate in a direc-

tion normal to the substrate. An analytical treatment of

squeeze-film mechanisms, in the relevant limit of small

Reynolds number and isothermal squeezed gas,27 leads us to

a Q factor Qsqueeze¼xm/Csqueeze where

Csqueeze ¼
3ga2

2tqh3
1þ b

a

� �2

þ 1� ðb=aÞ2

lnðb=aÞ

" #
:

To obtain satisfactory quantitative results with this formula,

an effective over-length for the plate lateral dimension

(a�b) must be considered to account for border effects. For

the small Knudsen number in our study, we adopt an approx-

imate effective over-length of 8 h/3p inferred from previous

works on moving plates.27,28 This leads to Qsqueeze values

that decrease for increasing (a�b) and that are about 20%

above the measured Q values. This quantitative discrepancy

vanishes if we now sum the two contributions for both air

damping and squeeze-film damping. To this purpose, we first

divide the air damping contribution by a factor two, in order

to only account for air damping on the upper side of the disk.

Indeed the damping on lower side of the disk is fully

included in the squeeze-film contribution. Finally, the two

dashed lines in Fig. 3(b) correspond to 1/Q¼ 1/2Qairþ 1/

Qsqueeze for the two bounding curves for xm in Fig. 3(a).

These dashed lines satisfactorily bound the observed Qs,

showing the validity of the employed effective models for

air and squeeze-film damping in our experimental situation.

An exhaustive systematic study as a function of the disk and

surrounding gas parameters is beyond the scope of the pres-

ent article, but will allow understanding more precisely the

limits of validity of these models.

In summary, we study experimentally the elastic and

dissipative mechanical behavior of miniature GaAs disks

vibrating in air. We derive effective analytical models that

satisfactorily explain the observed vibrational mode shape,

the measured mechanical frequency and the observed damp-

ing. The latter appears to originate from both squeeze-film

damping and damping by the surrounding air. As compared

to numerical simulations, this analytical modeling offers a

direct insight into the parameters that need to be controlled

when using optomechanical disk resonators in a fluid. On a

more general level, optomechanical disk resonators could

become a model system for investigating fluid-structure

interactions, thanks to their high geometric symmetry and

exquisite optomechanical response to external forces.

This work was supported by CNano Ile de France and

the French Agence Nationale de la Recherche.
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