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Abstract: Whispering gallery modes in GaAs disk resonators reach half a
million of optical quality factor. These high Qs remain still well below the
ultimate design limit set by bending losses. Here we investigate the origin
of residual optical dissipation in these devices. A Transmission Electron
Microscope analysis is combined with an improved Volume Current
Method to precisely quantify optical scattering losses by roughness and
waviness of the structures, and gauge their importance relative to intrinsic
material and radiation losses. The analysis also provides a qualitative
description of the surface reconstruction layer, whose optical absorption is
then revealed by comparing spectroscopy experiments in air and in different
liquids. Other linear and nonlinear optical loss channels in the disks are
evaluated likewise. Routes are given to further improve the performances of
these miniature GaAs cavities.
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1. Introduction

Whispering Gallery Mode (WGM) Gallium Arsenide (GaAs) optical cavities incorporate the
beneficial optical properties of the GaAs material into an optical mode of ultra-small volume
V and high quality factor Q. They have led to important applications in several contexts
where enhanced light-matter interaction is required like cavity-QED [1-3], nonlinear optics
[4-6], low-threshold laser devices [7-9] and optomechanics [10—12]. Even if based on
somewhat distinct concepts, all these applications generally benefit from large values of Q/V
to enhance the local electromagnetic energy density.

For optical wavelengths in the near infrared, the mode volume of GaAs disks WGMs can
be made sub-pm? [3,11], while Q reaches 5.10° in the best technological realizations, be they
based on wet [13,14] or dry etching fabrication [15,16]. While this brings these resonators
close to the state of the art of Q/V in semiconductors [17-20], they could in principle perform
even better. Indeed the optical Q expected from bending losses of a disk can be made ultra-
high. In a disk of radius 1 um and thickness 300 nm, enabling sub-um?> WGM volume, the
design Q is for example larger than 10'° at a wavelength of 1 um, in the transparency region
of GaAs. In this view, it appears crucial to understand what currently experimentally
precludes GaAs cavities to reach these ultimate light confinement performances.

Here we address these questions by a high-resolution Transmission Electron Microscope
(TEM) investigation of GaAs disk resonators and by systematic optical experiments
performed on their WGMs in linear and non-linear regimes. The TEM analysis provides
precise structural information about the resonators and their surfaces, which permits a
quantitative assessment of optical scattering losses by means of an improved Volume Current
Method. In high-Q GaAs WGMs, scattering by imperfections appears to be eclipsed by a
residual level of optical absorption. This finding is supported by optical experiments at high
optical power, where nonlinear thermo-optic and two-photon effects are carefully analyzed to
gain insight in optical absorption processes. Finally, comparative WGM spectroscopy
experiments are performed both in air and in liquid, which reveal the important role played by
surface absorption. A consistent picture of optical dissipation in GaAs disks eventually
emerges, which points towards routes to best exploit their potential.

2. Bending losses

In this section, we first discuss radiative losses in GaAs disks resulting from their curvature.
The material absorption is assumed to be negligible for the wavelengths of interest, far
enough from the gap. This assumption will be relaxed in sections 6 and 7. For consistency we
start with a rapid description of WGMs and their computation techniques. Thanks to the
rotation invariance of a disk resonator around its axis Z and to the isotropy of the linear
dielectric response of the material, the Maxwell equations in this geometry can be solved by
employing an azimuthal dependence exp(im6) of the electromagnetic field. This allows
reducing the 3-dimensional electromagnetic problem of a disk to a 2-dimensional one, which
is then treated by approximate semi-analytical means like the Effective Index Method (EIM)
or by exact numerical techniques like FEM. In the EIM, the field is usually assumed to be
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quasi-TE (-TM) meaning that the only non-vanishing component of the magnetic (electric)
field is orthogonal to the disk plane, noted F,. Combined with an assumption of separation of
the radial (r) and vertical (z) variables in any plane containing the Z-axis, the quasi-TE (TM)
approach leads to solutions for the field component F, with a radial dependence of the form
Jm(kpnesr) in the disk. Here Jn is the first kind Bessel function of order m, nesr the effective
index of the TE or TM mode in a GaAs slab of same thickness as the disk, and k;, the radial
wave number [21,22]. p gives the number of lobes of F, along the radial direction. In the
EIM, WGMs are hence naturally classified with a radial and an azimuthal integer p and m,
but this classification remains useful in numerical computations as well even if these do not
rely on EIM assumptions. For example Fig. 1 shows a 2D axisymmetric FEM simulation in
the (r,z) plane of a WGM of a disk of thickness 200 nm, for which the EIM assumptions start
to break down. Still the dominant electric field component E;, which is proportional to the
magnetic field H,, follows closely a Bessel-like behavior with p = 4, and the mode is
identified as being TE (p =4,m = 11).

PML A 337.42

300
Air
200

100

GaAs MR al PML oo

1 pm

PML

¥ -499.96

Fig. 1. Axisymmetric FEM computation of the TE (p =4, m = 11) WGM of a GaAs disk of
radius 2.5 pm and thickness 200 nm. The cross section of the disk is visualized. The vertical
axis is Z, while the horizontal axis corresponds to the radial direction. The dominant radial
component of the electric field E is shown in arbitrary units, together with PMLs employed for
the computation of Q.

The prediction of the radiation loss rate k.4 of a given WGM of angular frequency ®cay
requires a very accurate description of the mode’s spatial pattern. For this reason, the
approximate EIM approach is often quantitatively wrong in computing the radiative quality
factor Qrad = ®cav/Kraa and fully numerical techniques are more indicated. In Fig. 1, Perfectly
Matched Layers (PMLs) are shown that emulate far-field absorption of the radiated field in
FEM with the Comsol software. For comparison purposes, we also employed axisymmetric
Finite Difference Frequency Domain homemade codes to compute Qg and found very solid
agreement with FEM results. Figure 2 plots the calculated values of Qg4 for WGMs of 200
nm thick GaAs disks of radius 5 and 2.5 pum. The values are given for modes in the
wavelength range 1500-1600 nm, in the transparency region, which we employed in past
experiments [10,14,16]. TM modes exhibit moderate Q.4 of at best a few thousands, when TE
modes can reach Qg in excess of 10°. We estimate that our numerical computation saturates
in precision around 10'° hence we did not plot explicitly points beyond that value. For the
disk of radius 2.5 pm for example, we infer simply that Qraq exceeds 10'° for the TE (p = 1)
mode. For the disk of radius 5 pm, Q¢ >108 for TE modes of p < 5. These modes are easily
mode-matched to optical fiber tapers and hence accessible in experiments [23]. In these
experiments, in contrast to the above radiative predictions, the best measured optical Qs
saturate at half a million [14]. It is the purpose of the next sections to precisely establish
which factors contribute to this difference.
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Fig. 2. WGM radiative quality factor Qg set by bending losses of GaAs disks. (a) Disk radius
of 5 um and thickness of 200 nm. (b) Disk radius of 2.5 um and thickness of 200 nm. The
values are given for TE and TM-like modes of varying radial p number, in the 1.55 pm
wavelength range.

3. Fabrication of GaAs disks

The GaAs disks employed in this work are fabricated out of an extra-pure wafer consisting of
a layer of GaAs (200 nm) and of AlpsGagoAs (1.8 um thick) grown by Molecular Beam
Epitaxy (MBE) on a semi-insulating GaAs substrate. Using e-beam lithography with a
negative resist (MaN 2403 or 2401), disks are patterned on the surface and then wet-etched in
a two-step process [14]. The first non-selective wet etch relies on a 1:1:1 mixture of
hydrobromic acid, potassium dichromate and acetic acid, and is carried-out at 4°C. It gives
rise to a GaAs/AlGaAs pillar-like structure, whose circular shape depends crucially on
stirring conditions in the etching solution and is improved by keeping the sample at rest. In a
second step, also carried-out at 4°C, a 1:20 diluted hydrofluoric (HF) acid solution selectively
under-etches the AlygsGag2As layer to form the disk pedestal while leaving the GaAs disk
unaffected. During this step, regular dips in a KOH solution are employed to remove AlGaAs
etch byproducts from the sample surface. Figure 3 shows SEM images of GaAs disks
fabricated following this process, with a radius that typically varies from 0.5 to 25 um
depending on experiments. With this SEM inspection, the geometrical imperfections of the
disk are barely resolvable. Figure 3(a) shows a fabricated disk that looks very regular in the
shape, while Fig. 3(b) displays clean surfaces that are virtually free of defects or residual
roughness. Figure 3(c), with the strongest zoom, provides a hint of residual surface
imperfections, at a level that the SEM cannot properly analyze.

Fig. 3. SEM images of fabricated GaAs disks. (a) Complete disk of diameter 8 um and
thickness 200 nm. (b) Zoom on the top-surface and sidewall of a large GaAs disk of thickness
200 nm, with no residual roughness visible at that scale. (c) Close-up on a GaAs disk sidewall
showing barely resolvable residual imperfections at the finest scale achievable in the SEM.
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4. TEM analysis

This section focuses on the departure of GaAs resonators from an ideal circular geometry.
This departure includes both residual roughness of the disk sidewalls and non-perfectly
circular geometry of the disk. These geometrical imperfections are analyzed by ultra-high
resolution TEM experiments, to circumvent the limited resolution of the SEM. We employ a
TEM apparatus corrected from spherical aberrations, which reaches a spatial resolution of 80
pm (Jeol ARM 200F cold FEG). The best contrast in TEM images on GaAs crystal is
obtained for a sample thickness between 50 and 200 nm. While we fabricated 50 nm thick
samples showing excellent contrast, we will focus here on results obtained with 200 nm,
which is closer to the thickness of disks employed in optical experiments. The disks are
fabricated as described above. Next, the finished sample is turned upside-down over a TEM
copper grid and pressed and rubbed against it. This crude technique detaches about 1% of the
disks from their pedestal and deposits them on the carbon film covering the grid. While the
technique provides good conditions for TEM imaging, it has a poor yield and the deposited
disks are frequently broken. Figure 4 shows an example of a GaAs disk of diameter 5 pm
deposited this way and imaged with an increasing magnification factor of the TEM from Fig.
4(a) to 4(f). In Fig. 4(a) the disk appears perfectly circular and the pedestal appears in dark.
The square shape of the pedestal is induced here by the specific conditions of the HF etching
step and plays no role in the analysis below. In the series of zooms from Fig. 4(b) to 4(e), the
complexity of an interface can be appreciated: starting from a remarkably smooth circle in
Fig. 4(b), the boundary loses its regularity at smaller scale and it becomes difficult to
distinguish a precise border between the ordered GaAs material and its external environment.
In Fig. 4(e)-4(f), an amorphous boundary zone is progressively revealed between the GaAs
crystal and the exterior. Electron Energy Loss Spectroscopy (EELS) experiments were
carried-out on this amorphous zone, which revealed the prominent presence of Gallium and
Arsenic atoms. However, despite careful checks, no Oxygen atomes were detected by this
EELS analysis, contradicting the usual picture of an oxide layer formed on the surface. We
infer that the fabrication process produces an amorphous GaAs reconstruction layer at the
surface of the disks.

Fig. 4. TEM images of a GaAs disk of radius 2.5 um and thickness 200 nm. (a) Complete disk
with magnification factor of x 3000. (b) x 10 000. (c) x 50 000. (d) x 200 000. () x 400 000.
(f) x 800 000.
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Because of the high quality of the epitaxial material, the upper and lower surfaces of the
disk are planar and we assume that geometrical imperfections are concentrated on the disk’s
curved sidewall. The sidewall outline is projected on a 2D contour of the disk in the plane of
TEM observation, and analyzed as sketched in Fig. 5. Starting from a 2D TEM image of the
disk (Fig. 5(a)), the contour is extracted using the ‘edge’ algorithm of Mathlab. This results in
a continuous 2D contour (Fig. 5(b)), which is then fitted by a circle defined by its center and
its radius R (Fig. 5(c)). The center being known, an azimuthal angle 6 can be employed to
parameterize the distance r(0) of the contour to the center (Fig. 5(d)). The information on the
irregular contour is represented in 1D to facilitate further statistical analysis (Fig. 5(e)). We
characterize the disk contour's departure from ideality by the parameter dr(0) = r(6)-R,
corresponding to the distance to the fit circle of radius R.

This contour analysis requires using the right scale in TEM imaging. Indeed a small
magnification factor leads to a reduced spatial resolution that can affect the obtained
statistical information. On the other hand, at large magnification factor, the presence of the
amorphous surface reconstruction layer renders the definition of an exact boundary between
disk and exterior difficult. Additionally, the restricted imaging field of Figs. 4(e) and 4(f)
(edge of 50 and 20 nm respectively) induces under-estimation of some statistical quantities
needed for optical scattering problems. For this reason, a multi-scale approach would in
principle be welcome for the study of contours. Still in this work, we adopted a single
imaging scale that permits the observation of the complete disk like shown in Fig. 4(a), for
two reasons.

a) [ | s b) C) | foa d)
1 r(0)
o' )
. \
é?E
4 [Ae

A €)

r()

Y Y Y. S A M A A A A
N NA NN WV 7

Fig. 5. Principles of disk contour analysis. (a) Image of an irregular disk. (b) A rough contour
boundary is extracted. (c¢) The irregular contour is fitted with a circle arc. (d) The distance to
the fit circle is registered as a function of the azimuthal angle 6. (e) The obtained irregular
contour is plotted on a horizontal axis for further analysis.

Firstly, it is hard to recover the correct statistical analysis of the whole contour from a
series of magnified images of too restricted sub-parts of the contour. Indeed, in our procedure,
each image of the series leads to its own fit circle that differs from the fit circle of the global
contour, creating a bias in the analysis when the stitched information about the whole contour
is needed. Hence the complete disk should best be visible on a single TEM image. Secondly,
this latter imaging scale provides sufficient resolution to resolve the contour irregularities
needed for the analysis. In order to verify this, we simulated the effect of images with a
limited spatial resolution on our contour extraction protocol. This was done by convoluting a
Gaussian function with randomly generated 2D disks (to artificially mimic blurry/unresolved
images) and applying our contour extraction protocol. Increasing the Gaussian width
progressively affected dr(0) and its auto-correlation function, which adopted a Gaussian

#236326 Received 17 Mar 2015; revised 8 Jul 2015; accepted 8 Jul 2015; published 22 Jul 2015
©2015 OSA 27 Jul 2015 | Vol. 23, No. 15 | DOI:10.1364/0E.23.019656 | OPTICS EXPRESS 19662



shape. Under real experimental conditions with the resolution of our TEM apparatus, this
effect turned out to be negligible. With the same convolution procedure, we also simulated
the effect of the image pixel size, which was to create a Dirac-like peak at the origin in the
auto-correlation function of dr(0). Since this peak is deterministically associated to the pixel
size, it can be disregarded in the final data. For all these reasons, in the results shown below,
the imaging scale is fixed to image a whole disk and the pixel-effect is not further considered.
Now that a proper TEM magnification factor is chosen, the question of multiple scales in
the analysis of contour irregularities can be dealt with as follows. At large scale, the
irregularities may present some level order. For example, if a disk is slightly elliptical or if the
contour oscillates in a regular manner, it may be approached by a series of sinusoidal
functions. Once this “wavy” part of the contour is removed, a non-ordered residue Res(6)
associated to the residual roughness remains, whose correlation function must decay to zero at
large distance. The distinction between waviness and roughness is formally written like [24]:

or(0)=r(0)-R= ZN:Am cos(m@+ @, )+ Res(6)

m=1

Note that this distinction between waviness and roughness is somewhat arbitrary since it
depends on the imaging scale. Mathematically, the contour r(0) is 2zn-periodic and can be
approached arbitrarily close by a Fourier series. In practice, the imaging scale and the level of
resolution determine at which order N the observer sets the frontier between waviness and
roughness. In what follows N is the smallest integer that leads to an auto-correlation function
of Res(0) decaying at large distance below 20% of its peak value.

Figure 6 illustrates this statistical approach by showing the results obtained on the
complete disk of Fig. 4(a). Figure 6(a) plots the contour extracted from the TEM image in
blue, together with the waviness in red, corresponding to the fit function (in nm):

r(6)=2457—-1.35cos(6—0.60)—12cos (26 +0.36)
+17cos(360+1.34)+3.39cos (46 +0.25)—0.9cos (560 +0.03) +1.4 cos (66 +0.23)
+0.6c05(76-0.06)—1.1cos (86 +0.09) + Res(6)

Figure 6(b) shows the spatial auto-correlation function of the waviness, whose amplitude
oscillates without decaying far from the origin. Figure 6(c) shows the residue Res(0), which
fluctuates essentially between + and — 3 nm with no apparent spatial order. Figure 6(d) is the
auto-correlation of the residue, which decays to zero far from the origin. It can be fitted by an
exponential decay or by the sum of a sine wave and an exponential [25] to reduce the fit error.
The parameters of the exponential fit provide effective values for the correlation length L. of
the roughness and its amplitude o (c? is the auto-correlation value at the origin).
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Fig. 6. Contour analysis of a complete disk. (a) Azimuthal representation of the distance dr(0)
to the fit disk. Data are in blue and the fitted waviness function is in red. (b) Auto-correlation
function of the contour 1(6). (c) Residue of the contour once the waviness is subtracted (d)
Auto-correlation function of the residue.

While this first example of analysis was performed on a complete disk, we also extended
the analysis to some partially broken disks where one half to two thirds of the contour
remained intact after deposition on the TEM grid. To this purpose, we first extrapolated each
partial contour to a periodic function with period close to 2w, and employed the above
statistical procedure. We checked the consistency of this extrapolation method by analyzing
quarter sections of the complete disk and comparing the outcomes of the statistical analysis
with those obtained on the complete contour. The extrapolation gave good agreement for disk
sections of quarter length or more, and finally allowed obtaining an analysis of the roughness
of four other disks, whose parameters are summarized in Table 1. There is a quantitative
resemblance between the 5 analyzed disks in total, with the amplitude of residual roughness
lying between 0.5 and 1.5 nm and the correlation length between 20 and 80 nm.

Table 1. Analysis of the residual roughness of five GaAs disks having distinct contour
angular extent.

disk 1 disk 2 disk 3 disk 4 disk 5
(complete disk 2m) ®/2) (4x/3) (5m/4) @/2)
Radius R (nm) 2457 2400 3014 3169 3188
Amplitude o (nm) 1.05 0.57 141 0.57 .15
L. (nm) 68 22 68 27 64

5. Optical scattering losses

In order to assess the impact of the surface irregularities on WGM photon scattering, we
employ a perturbative approach of Maxwell’s equations, the so-called Volume Current
Method (VCM) [26-28], in the limit of a vanishing material absorption. This perturbative
treatment is justified by the small amplitude of contour irregularities (30 nm waviness and 1
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nm residual roughness) as compared to the typical disk radius of a few microns. The
unperturbed electric field E%(r) (associated to a perfectly circular contour) induces a
polarization current J(r) in the geometrically perturbed volume of the disk (the irregular
contour) that radiates an electric field SE(r) such that the solution of the perturbed problem
becomes E(r) + SE(r). This total field must obey the equation:

2 2

VA(VAE(r)) =L (r)E (r) = Z-8¢, (nE(r)
C C

with 8e/(r) = (n>-1)[O(r-R)-O(r-R-51r(0))] = (n?>-1)8(r-R)dr(0), where the Dirac function §(r) is
the derivative of the Heaviside function O(r), and where n is the refractive index of the disk
resonator material. The above equation can be rewritten as:

@ @ @
VA(VASE(r))——& (r)3E(r)=—8¢, (r)E’ (r)+— 8¢, (r)3E(r)

c c c
where it clearly appears that the weak field SE(r) is driven by the right hand-side source. In
the vast majority of the VCM literature the second-order term of the source is assumed to be
negligible and the perturbation polarization current becomes J(r) = -ioeode(r)E(r).
However, the discontinuity of the orthogonal component of the electric field at the interface
of two dielectrics can lead to a breakdown of the usual VCM formulation. This is notably
important in TE WGMs where the electric field has an appreciable component orthogonal to
the disk’s sidewall. This problem in the perturbation of Maxwell’s equations was solved in
recent works [29,30] following early discussions [31]. In the spirit of these recent
developments, we employ here a corrected expression for the polarization current [32]:

J(r)=-io [eOAer‘? (r)-Ae,'D} (r)] 3(r—R)dr(0)

with Ag; = n%-1 and Ag~' = 1/n2-1. In this expression E; and E. are the field components
parallel and orthogonal to the surface and D is the displacement vector, such that J is
continuous at the interface. From the polarization current J, the potential vector A(r)
associated to the correction field SE(r) is expressed in form of a Green function:

L@, | o)
L/ 2,

_& vec 3,~&€c , i%ur.r'3v
A(r)_47er(r)|r—r'|dr i jJ(r)e &r

4

where the second approximate expression holds in the far-field |r-r’[>>R. In the far field, we
use the simplified vectorial relation VA = -i(w/c) urA and express the electromagnetic fields
radiated by the perturbation polarization current as:

SE(r)=iwu, A(u, AA) 5H(r)=—iw\/%(ur/\A)

Starting from a given unperturbed WGM field E° calculated by FEM, the injection of an
arbitrary contour perturbation 8r(0) leads to the total field E = E® + 8E, which is obtained at
each point r by numerically integrating the FEM results through the above formula. Once E
and H are known, the radiated electromagnetic power P is computed by summing in the far
field the flux of the Poynting vector across a sphere S surrounding the disk P = [s V4. (EAH* +
c.c.).ur ’dQ. The quality factor Q = ®cav/k of the WGM, with « the intrinsic energy decay rate
of the mode, is then obtained by dividing the energy stored in the mode by the energy lost
during one optical cycle Q = (/P) Jy % go[E*(r)’dV.
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Fig. 7. Poynting vector modulus in the far field (a.u.). The calculation is made by FEM on the
TE (p = 1,m = 21) WGM of the complete disk studied by TEM in previous section (disk 1).
The disk with its WGM is visible in the middle of the sphere. (a) The complete irregular
contour dr(0) is employed, including the roughness and waviness extracted by the TEM
analysis. (b) A simple waviness contour 6r(0) = 50cos(21 x 0) (in nm) is taken for illustrative
purpose.

If the total field E = E® + 8E should in principle be considered to compute the Poynting
vector, there are in practice some simplifications for calculating Q. Firstly, the field 6E
radiated by the polarization current associated to the residual roughness of the disk sums in an
incoherent manner with the unperturbed field E'. Hence the associated “roughness” scattering
losses, proportional to Qeuen!, can be strictly separated from bending losses: Q! ¢ad + rough) =
Qrad™! + Qrougn ! Secondly, even though the SE associated to the waviness is coherent and can
interfere with E, we have checked that this effect is limited in our study. It leads to about 2%
error when bending losses and waviness losses are treated separately, such that we can safely
use Q! (rad + wav) = Qrad”! + Quav™! in what follows. Last, the separation holds true as well for
the two fields OE associated to the roughness and waviness, which are respectively incoherent
and coherent with E°, such that Q7! (ough + wav) = Qrough ' + Qwav !. This incoherent and
coherent character is directly apparent in Fig. 7. The figure shows the amplitude of the
Poynting vector on the far-field sphere for an irregular disk with roughness and waviness
(Fig. 7(a)) or with mere waviness (Fig. 7(b)). An incoherent “speckle-like” pattern is obtained
with the rough disk, while the pattern is highly ordered when the waviness alone is
considered.

Let us now apply this hybrid perturbative/numerical approach to discuss optical scattering
losses in the disk analyzed in the previous section (disk1). Our TEM study has indeed shown
that the contour irregularities of diskl are representative of what is obtained by our
fabrication procedure. Moreover, the parameters of its residual roughness (6 = 1.02 nm and L.
= 68 nm) are on the high side of the 5 disks studied in the TEM, thus focusing on diskl
avoids underestimating scattering losses. This disk, with a radius R = 2457 nm and a
thickness of 200 nm, supports four WGMs of Q¢=>50 at a wavelength close to 1550 nm
relevant to the experiments discussed here. These four modes are TE(p = 1, m = 21; A =
1537,240 nm, Qpuq = 9,12.10°), TE(p = 2, m = 17; A = 1537,003 nm, Qra = 4,06.107), TE(p =
3, m=14; A = 1525,972nm, Q¢ = 4,71.10%) and TE(p =4, m = 11; A = 1549,996 nm, Q¢ =
82). Modes of lower radiative Q, like TM modes, are disregarded. To first exemplify the role
of the waviness in the optical scattering process, we inject in the model a perturbation contour
or(0) = 50cos(my X 0) (in nm), corresponding to a pure waviness of + —50 nm amplitude, with
azimuthal number m,,. The results of the computation of Q. for the four TE modes are
shown in the left panel of Fig. 8. They show that a waviness amplitude as small as 50 nm can
lower Quay down to below 107 if the azimuthal numbers of the waviness and that of the WGM
are matched. In that specific case indeed, the wavy contour acts as an efficient diffraction
grating for the WGM field, thereby severely impacting the optical losses.
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Fig. 8. Computed Q factor of the 4 TE WGMs of disk1, for various artificial or real measured
contours. The calculation uses the perturbative/numerical approach discussed in the text. Left
panel: An artificial wavy contour dr(0) = 50cos(m, X 0) (in nm) is employed. The black (red,
green, blue) data correspond respectively to TE (p=1,m=21;p=2m=17;p=3,m=14;p=
4,m = 11). The colored vertical markers indicate the azimuthal number m of the corresponding
WGM. A marked drop in Q. is observed when m, approaches m. Right panel: The real
contour measured by TEM on disk 1 is employed, with its different waviness components and
rough residue analyzed in section 4. The fit circle of the contour is associated to Qr.g, While the
waviness is associated to Quay and the residual roughness to Qouen. The total Q shown in purple

is giVel’l by Q,scauil = c)md71 + Q\VaV71 + Qruugl;l-

In a second stage, we now inject in the model the contour of disk 1 directly analyzed by
TEM, and decompose the contributions by injecting first the waviness contour alone (Qway)
and then the residual rough contour (Qrougn). The right panel of Fig. 8 summarizes the results
obtained on the 4 TE modes that have almost equal wavelength. Q. decreases with
increasing radial number p. Since the wavelength is almost fixed, increasing p reduces the
azimuthal number m from 21 to 11, which comes closer to the dominating azimuthal orders of
the waviness of disk 1 (1<mw<5). In contrast Qrougn is almost independent of the p number.
The total Q factor, accounting for the whole electromagnetic energy radiated and scattered out
of the disk, varies between a few hundreds and a few millions. The picture that emerges is the
following: for WGMs that are poorly confined by the curvature of the disk, such as TE (p =4,
m = 11) in Fig. 8, the Q factor is set by bending losses and Q = Qrag. As the confinement
progressively increases like for the TE (p = 3, m = 14) mode, the bending losses decrease and
the wavy nature of the contour is revealed. The Q is then set by Q7' = Qag™' + Quav . If the
WGM confinement further increases, the bending losses become negligible; the wavy losses
decrease as well such that the scattering on residual roughness starts playing a role. At this
stage, corresponding to TE(p = 2, m = 17) in Fig. 8, the Q is given by Q™' = Quav™" + Qrough.
Finally, for the strongest confinement reached by the TE(p = 1, m = 21) mode, the wavy
losses are reduced to the point that scattering losses on residual roughness remain alone. In
this last case the Q is set by roughness (Q = Qrougn) and amounts to a few millions for the
disks considered in this work. In optical experiments performed on GaAs disks having the
same thickness and same radius, the best Qs attain half a million [13—16], even when focusing
on the p =1 or p =2 TE modes. This experimental observation also persists when scattering
losses are furthered reduced by increasing the disk radius beyond the value of 2.5 pum
corresponding to disk 1.

This all points towards other optical dissipation channels being responsible of the current
state of the art optical Q factors of GaAs disk resonators. Scattering by contour irregularities
is not the dominant loss mechanism for the best disks employed in our experiments.
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6. Optical absorption in GaAs disks

Another loss mechanism to be considered is absorption of photons stored in the WGM. Even
if our experiments are performed in a transparency region of GaAs, there are some
experimental facts obviously pointing towards the existence of residual linear optical
absorption. The most striking is the thermo-optic distortion of WGM resonances in the optical
spectra acquired at large optical power [11,14,33,34], see Fig. 9.

This phenomenon is explained as follows: as the laser wavelength is increased and
gradually swept across a WGM resonance, photons are injected in the disk and the optical
transmission drops. Residual absorption within the disk produces a local heating that
increases the refractive index by means of the positive thermo-optic coefficient of GaAs. As a
consequence, the WGM resonance is progressively pushed to longer wavelength as the laser
continues its wavelength sweep. The cavity wavelength shift ceases when further laser
wavelength increases cease to inject more light in the resonator. At this point, the optical
transmission abruptly recovers the out-of resonance value. As a result the final spectrum
acquires a quasi-triangular shape as observed in Fig. 9.

a) 1,0 T T T T T T T b) 1,0 T T T T
= =
2 2
20,94 £09-
= =
g g
& 0,81 & 0,81
=l =l
N N
Tés 0,7 Téﬁ 0,71
] ]
“ 0.6 “ 0.6
T T T T T T T T T T T T T T
15782 15784  1578,6 15788 15782 15784  1578,6 15788
Wavelength (nm) Wavelength (nm)

Fig. 9. Thermo-optic distortion of WGM resonances in an optical transmission spectrum. The
disk radius is 2.5 pm and the thickness 200 nm (a) Experimental data. The optical power is
increased from black to red to blue, making the thermo-optic triangular shape of the resonance
progressively appear (15 pW, 75 puW and 150 pW respectively of output power). The
employed resonance has a doublet structure due to the coupling of clockwise and counter-
clockwise modes of the disk. (b) Modeling. The thermo-optic distortion is numerically
modeled as explained in the text.

The thermo-optic behavior can be modeled accurately. The main thermal conduction
channel between the disk and its environment is the AlGaAs pedestal (see Fig. 3(a)). The first
step is to relate a temperature increase AT in the disk to the optical power P absorbed
within the disk. Assuming a uniform temperature in the disk and a thermal gradient localized
in the cylindrical pedestal, which is valid for a sufficiently narrow pedestal, we obtain the
simple steady-state relation AT = hy/(Awarp?)Pabs with Ag the thermal conductivity of AlGaAs,
hp and 1, the height and radius of the pedestal. This relation is complemented by its dynamical
version AT(t) = [AT(0)-hy/(Aamtrp?)Paps]e ™™ + hy/(Anmtry?)Pans. The second step is to relate Pays to
the cavity frequency shift Aoy induced by the temperature increase AT. This is done by
means of the coupled-mode theory, leading to the standard expression [14,16]:

K

e

in

(o, +Aw

cav cav

K K.
—w) + e+
)" +( 2 T )
where Kabs s the absorption rate of cavity photons, K. the energy coupling rate between the

cavity mode and the optical input port (the tapered fiber mode for example), k; the energy
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decay rate of cavity photons, ®cay the cavity WGM bare frequency, @ the laser frequency and
Pin the power incident on the disk cavity. The loaded quality factor is defined by the relation
Q = ®cav/(K + Ke). In the limit of small AT valid for experiments we also have the linear
relation A®cay = (d®ca/dn)(dn/dT)AT with n the refractive index of GaAs, which closes a set
of 3 coupled equations linking AT, Pas and Awmc. To simulate a laser spectroscopy
experiment where the laser wavelength is scanned step by step across a WGM resonance, the
three equations are solved and the steady state solution found at each wavelength step serves
as the starting point for the next. This iterative dynamical approach leads to the simulations
shown in the right panel of Fig. 9, which satisfactorily reproduce the experimental data of the
left panel. Note that most parameters in the model are fixed independently: hy, ., k; and P,
are measured while (d®ca/dn) and (dn/dT) are known precisely. The only adjustable
parameters left are ka»s and r,. The pedestal radius 1, is measured with limited precision in
SEM images and is anyway an approximation since our pedestals are not strictly cylindrical.
With this uncertainty in the effective 1, the agreement with data shown in Fig. 9 indicates an
absorption rate ks in the 1-10 GHz range, corresponding to a Qubs = Weav/Kans between 103 and
10°. If the precision of this evaluation is not sufficient to be perfectly conclusive, it is yet
consistent with the idea that in the low optical power regime, residual linear optical
absorption limits the Q of GaAs disks operated at a 1.55 pm wavelength.

At higher optical power, other nonlinear effects like two-photon absorption (TPA) are
revealed. The TPA cross-section B is defined by the propagation relation dl/dz = -al-BI?
where I is the light intensity, a the linear absorption coefficient (o = Kabs/Ve With v, the group
velocity for the considered mode) and z the propagation direction. In bulk GaAs TPA is
relatively large with f ~10-30 cm/GW around 1.55 pum of wavelength at room temperature
[35-38]. In WGM laser spectroscopy experiments, the effect of TPA would be to decrease the
effective Q factor at large power. Depending if the experiments are carried-out in the under-
or over-coupling regime, this should lead to a decrease or increase of the contrast of WGM
resonances in the optical transmission. This behavior is indeed observed experimentally.
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Fig. 10. Two-photon absorption in WGM spectroscopy at large optical power. (a)
Experimental data. The lowest optical power (black curve) corresponds to 333 pW measured at
the output of optical fiber taper, where the measured Q is 2.3 10*. The power is then multiplied
by a factor 2 (red) to 13 (orange). (b) Numerical model. The behavior is reproduced by the
three coupled equations discussed in the text including TPA.

Figure 10(a) shows an under-coupled WGM resonance measured at 13 distinct optical
powers. As the power is increased step by step by a factor 13 in total (from black to orange),
the thermo-optic distortion is accompanied by a clear reduction of the contrast. This nonlinear
behavior can be modeled by completing the thermo-optic model presented above with the
TPA nonlinearity. To this end, we transpose the standard B coefficient into a TPA absorption
rate krpa proportional to the circulating power in the cavity, which is directly injected into the
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coupled-mode equations describing the cavity field dynamics. In the above thermo-optic
model, this results in changing Kabs into Kabs T Krpa and «; into ki + krpa. The results of such an
approach are shown in Fig. 10(b). The agreement with experimental observations is good,
with as single free parameter the effective modal volume of TPA, taken here to be an
adjustable fraction of the disk volume. These results show that at the largest power employed
in our experiments, multi-photon processes participate to the optical response of GaAs disks.
Calculations indicate that for a disk of radius 1 pm and intrinsic optical Q of 10°, nonlinear
losses become comparable to linear losses for a power as small as 50uW dropped into the
disk.

In summary, this section comes to the conclusion that multi-photon processes dominate
the optical dissipation of high-Q GaAs disks at large power, while residual linear absorption
dominates at low optical power. In the final section, we experimentally study the origin of
this latter undesirable dissipation channel.

7. Optical absorption of GaAs disks studied in liquids

If linear optical absorption below the bandgap is the limiting mechanism for high-Q GaAs
cavities operated at low power, the question remains of where and why this absorption takes
place. With a residual p-doping of our GaAs material below 10'> ¢cm™ and statistically no
dislocation present in the volume of a single disk, it is difficult to anticipate or measure the
small level of bulk absorption present around 1.55 pm of wavelength. In our TEM
experiments, we observed the presence of a 2 nm reconstruction layer at the surface of the
disks, which may induce the presence of mid-gap states. Given the partial leakage of WGMs
at the surface of the disks, and given the large surface to volume ratio of disk resonators, the
surface reconstruction layer may produce substantial optical absorption below the bandgap.

To reveal and study such phenomenon, we carry out comparative spectroscopy
experiments of WGMs in air, in dionized water (DI) and in diluted ammonia (NH4OH 28%
w/w). Liquid ammonia, like other bases and acids, is known to dissolve the reconstruction
layer generally formed at the surface of GaAs in ambient conditions [39]. For these
experiments, we employ GaAs disk samples of the kind introduced in [40], where GaAs
tapered waveguides are suspended on chip in the disk’s vicinity to allow evanescent coupling.
In this configuration the disks can be easily operated in a liquid by depositing a droplet on the
sample’s surface. The results are summarized in Fig. 11.

In air (Fig. 11(a)), the typical thermo-optic distortion of a WGM resonance appears as the
optical power is progressively increased. Just like already observed in Fig. 9, the resonance
has a doublet structure produced by the coupling of clockwise and counter-clockwise WGMs.
When the same measurement is reproduced in DI water (Fig. 11(b)) several effects appear.
First the global WGM resonance is shifted about 15 nm towards longer wavelengths. This
shift results from the refractive response of water sensed by the evanescent field of the WGM,
as reproduced by FEM simulations (not shown). The loaded optical Q measured at low power
and the contrast of WGM resonances remain the same as in air, implying that an equivalent
optical power is circulating in the disk WGM at resonance, still the thermo-optic distortion is
slightly less pronounced than in air. We ascribe this difference to the added thermal
conductance offered by the presence of water surrounding the disk. After drying the water
droplet, the system returns quasi-reversibly to the starting situation in air. Interestingly, the
behavior is quite different in diluted ammonia (Fig. 11(c)). Firstly the WGM resonance is
irreversibly blue-shifted by a few nanometers in wavelength, consistent with the removal over
the whole disk of the reconstruction layer of 1 to 3 nanometers of thickness. Second, the
thermo-optic distortion of WGM resonances is strongly reduced, even though the loaded
optical Q measured at low power and the contrast of WGM resonances are the same as in DI
water, implying again an equivalent circulating in the WGM. Since ammonia and water
essentially possess the same thermal properties (thermal conductivity 0.5 against 0.6
Wm™'K™! and specific heat 4.7 against 4.18 kJkg™'K~! at 293K and latm [41]) and same
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ability to evacuate heat, the reduction of the thermo-optic distortion points towards a
reduction of the generated heat within the disk. We conclude that the in situ removal of the
reconstruction layer in liquid ammonia importantly diminishes the optical absorption in GaAs
disks, which would speak for a prominent role played by surface absorption when the disks
are operated in air and hence terminated by such layer. If operating resonators in ammonia
reduces surface absorption, one could expect an increase of the quality factor in ammonia. In
fact, water, and hence ammonia, has a large absorption coefficient in the near infrared (Fig.
11(d)), reaching the level of 13.3 cm™ for the wavelength of 1530 nm employed in our
experiments. FEM simulations show that 15.2% of the electromagnetic energy of the WGM
locates in the liquid, resulting in an effective absorption of 2cm™ and a corresponding
maximal Q of 6.10* This is precisely the Q value measured in the under-coupled regime in
water and in ammonia, which reinforces the above interpretation.
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Fig. 11. WGM laser spectroscopy and thermo-optic distortion in liquids. (a) In air. The optical
power is increased from black to blue, revealing the thermo-optic triangular shape of the
resonance. Here again, a resonance doublet is visible because of coupling of clockwise and
counter-clockwise WGMs. (b) In DI water. The optical power is increased from black to
purple, with same color code as above. The thermo-optic distortion of the resonance is slightly
reduced and the average wavelength red-shifted by about 15nm with respect to (a). (c) In
ammonia. The optical power is increased from black to red, with same color code as above.
The thermo-optic distortion is strongly reduced with respect to previous cases. (d) Water
absorption spectrum shown for reference, taken from [42]. In each configuration, the out of
resonance photodetector bias is proportional to the optical power P;, circulating in the
waveguide and incident onto the resonator.

8. Conclusions

The combination of high-resolution TEM studies, electromagnetic modeling and optical
spectroscopy experiments under various conditions leads us to conclude that our best GaAs
disk resonators are currently limited in their performances by residual linear absorption. The
different results are consistent with a level of residual absorption corresponding to a quality
factor Qabs between 10° and 10° close to 1.55 pum of wavelength. Our experiments run in
liquids strongly hint towards surface absorption as being an important source of residual

#236326 Received 17 Mar 2015; revised 8 Jul 2015; accepted 8 Jul 2015; published 22 Jul 2015
©2015 OSA 27 Jul 2015 | Vol. 23, No. 15 | DOI:10.1364/0E.23.019656 | OPTICS EXPRESS 19671



optical dissipation. The GaAs “native oxide” layer has a density of interface states of
103c¢m2 located within the bandgap [39] and such density is unknown but probably sizable at
the surface of our GaAs resonators. Passivation would hence be a natural way to improve
their quality factors. For GaAs, treatments such as sodium sulfide (Na,S), ammonium sulfide
((NH4)2S) [43-46] or photochemistry between GaAs and water [47] have been reported to
significantly improve the rate of photoluminescence, but they produce non-permanent results.
A recent passivation approach reporting permanent results over a year of time consists in
forming a stable nitrogen layer at the surface of GaAs [48,49]. Such nitridation, if
successfully implemented on GaAs micro and nanophotonic resonators like studied here, may
lead to improvement of their Q factor. Remains to be seen which level of Q/V is attained once
an efficient surface control is implemented, and what novel regimes of light-matter
interaction become accessible in GaAs.
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