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1. Supplementary Methods

Nonlinear spring constants for a superfluid
thin film

As detailed in the main text, the linear spring con-
stant k, cubic nonlinearity β and quartic (Duffing)
nonlinearity α for a superfluid surface wave of ampli-
tude η [r, θ] are given by

k =
3 ρ avdw

d4

∫ 2π

0

∫ R

0

η2 [r, θ]

η2 [R, 0]
r dr dθ, (1)

β = −6 ρ avdw

d5

∫ 2π

0

∫ R

0

η3 [r, θ]

η3 [R, 0]
r dr dθ (2)

and

α =
10 ρ avdw

d6

∫ 2π

0

∫ R

0

η4 [r, θ]

η4 [R, 0]
r dr dθ. (3)

In order to reveal the explicit dependence of the
(non)linear spring constants on R, d, µ and ν, we
evaluate the integrals further.

The integrals in equations (1–3) can be written

jointly as a function Φ
(p)
µ,ν with p = 2, 3 and 4, with

Φ(p)
µ,ν :=

∫ 2π

0

∫ R

0

Jpµ
[
ζµ,ν

r
R

]
cosp (µθ)

Jpµ [ζµ,ν ]
r dr dθ. (4)

The integral over the angular coordinate θ in Eq. (4)
is∫ 2π

0

cosp (µθ) dθ

= 2π

(
δµ0 + (1− δµ0)(1− δp3)

(p− 1)!!

p!!

)
(5)

=

{
π(1 + δµ0), 2πδµ0, π

3 + 5δµ0

4

}
for p = {2, 3, 4},

(6)

where we have introduced the Kronecker delta func-
tion δ. Observe here: the reduction of this integral to

2πδµ0 for p = 3 implies that Φ
(3)
µ6=0,ν = 0, so the cubic

nonlinearity β vanishes for all but the zeroth-order
(µ = 0) superfluid modes.

We can rewrite the remainder of Eq. (4) by sub-
stitution of the integrand:

J−pµ [ζµ,ν ]

∫ R

0

Jpµ

[
ζµ,ν

r

R

]
r dr

=

∫ ζµ,ν
0

Jpµ [q] q dq

ζ2
µ,νJ

p
µ [ζµ,ν ]

R2

:= φ(p)
µ,ν R

2 . (7)

It follows immediately that all spring constants k, β
and α scale with the square of the confinement radius:

Φ(p)
µ,ν = 2π

(
δµ0 + (1− δµ0)(1− δp3)

(p− 1)!!

p!!

)
φ(p)
µ,ν R

2.

(8)

The constants φ
(p)
µ,ν =

∫ ζµ,ν
0 Jpµ[q] q dq

ζ2µ,νJ
p
µ[ζµ,ν ]

are tabulated in

Table 1 for the three lowest mode orders µ and ν.
It is worth noting here that for p = 2, i.e., for the

spring constant k, a closed-form expression exists for

the integral
∫ ζµ,ν

0
Jpµ [q] q dq. In that case, we find∫ ζµ,ν

0

J2
µ [q] q dq =

ζ2
µ,ν

2

(
J2
µ−1 [ζµ,ν ] + J2

µ [ζµ,ν ]
)

− µ ζµ,νJµ−1 [ζµ,ν ] Jµ [ζµ,ν ]

=
ζ2
µ,ν − µ2

2
J2
µ [ζµ,ν ] ,

where we took advantage of the Bessel function re-
currence relations and our definition J

′

µ[ζµ,ν ] = 0 so
that Jµ−1[ζµ,ν ] = µ

ζµ,ν
Jµ[ζµ,ν ]. Then,

φ(2)
µ,ν =

1

2

(
1− µ2

ζ2
µ,ν

)
. (9)

Since ζµ,ν is always larger than µ, we have

0 < φ(2)
µ,ν ≤

1

2
(10)

and up to first order φ
(2)
µ,ν is independent of µ and ν.

While no closed form exists for φ
(3)
µ,ν , it too, is found

to be bounded:

0 < |φ(3)
µ,ν | ≤ |φ

(3)
0,1| = 0.44. (11)

The function φ
(4)
µ,ν does not converge for ν →∞, but

it grows sufficiently slowly that for the first twenty
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mode numbers it is contained in a relatively small
interval:

0 < φ(4)
µ,ν ≤ φ

(4)
0,20 = 2.3 (µ, ν ≤ 20) . (12)

The observations (10–12) are important, because the
(non)linear spring constants depend on the mode

numbers µ and ν through the function φ
(p)
µ,ν .

φ
(2)
µ,ν

ν = 1 ν = 2 ν = 3
µ =0 1/2 1/2 1/2
µ =1 0.353 0.482 0.493
µ =2 0.286 0.456 0.480

φ
(3)
µ,ν

µ =0 −0.437 0.259 −0.236

φ
(4)
µ,ν

µ =0 1.28 1.48 1.61
µ =1 0.290 0.837 1.03
µ =2 0.223 0.704 0.891

Table 1: Coefficients φ
(p)
µ,ν =

∫ ζµ,ν
0 Jpµ[q] q dq

ζ2µ,νJ
p
µ[ζµ,ν ]

for p =

{2, 3, 4} with ζµ,ν the νth zero of J
′

µ.

With Eq. (4), (8) and (9), we can then expose the
dependence of the (non)linear spring constants on the
film thickness d and confinement radius R:

k = (1 + δµ0) 3π ρavdw φ
(2)
µ,ν

R2

d4
(13)

= (1 + δµ0)
3π

2
ρavdw

(
1− µ2

ζ2
µ,ν

)
R2

d4
, (14)

β = −δµ0 12π ρavdw φ
(3)
0,ν

R2

d5
(15)

and

α = (3 + 5δµ0)
5π

2
ρavdw φ

(4)
µ,ν

R2

d6
. (16)

Single-phonon transition resonances from per-
turbation theory

The nonlinear Hamiltonian can be written, with λ�
1 a dimensionless parameter, as the sum H = H0 +
λH1 of the unperturbed Hamiltonian

H0 =
p2

2meff
+

1

2
k x2 (17)

and the perturbation

H1 =
1

3
βx3 +

1

4
αx4. (18)

Then, within first order perturbation theory,

λE(1)
n = 〈n|λH1 |n〉

= λ
β

3
x3

zpf 〈n| (a+ a†)3 |n〉+ λ2α

4
x4

zpf 〈n| (a+ a†)4 |n〉

= 0 + λ
3x4

zpfα

2
(n2 + n+

1

2
) (19)

and through second order perturbation theory,

λ2E(2)
n =

∑
k 6=n

| 〈k|λH1 |n〉 |2

E
(0)
n − E(0)

k

=
λ2

~Ωm

(
−α

2

8
x8

zpf

(
34n3 + 51n2 + 59n+ 21

)
− β2

9
x6

zpf

(
30n2 + 30n+ 11

))
. (20)

The energy eigenvalues of the Fock states of the har-
monic oscillator then become

En = E(0)
n + λE(1)

n + λ2E(2)
n

= ~Ωm(n+
1

2
)

+ λ
3x4

zpfα

2

(
n2 + n+

1

2

)
− λ2

x6
zpfβ

2

9~Ωm

(
30n2 + 30n+ 11

)
− λ2

x8
zpfα

2

8~Ωm

(
34n3 + 51n2 + 59n+ 21

)
(21)

with transition energies

En+1 − En = Ωm~ + λ3(n+ 1)x4
zpf

(
α− λ20

9

x2
zpfβ

2

~Ωm

)

− λ2
3x8

zpf

4~Ωm
(24 + 17n(n+ 2))α2. (22)

For the systems considered here, we can identify

the small factors
αx4

zpf

Ωm~ ∼
αx2

zpf

k and
βx3

zpf

Ωm~ ∼
βxzpf

k .
Indeed, they are factors of increasingly high order
appearing in the Taylor expansion of the Van der
Waals potential in main text Eq. (6) and (8): noting

that αx3 � β x2 � k x, we necessarily have
αx4

zpf

Ωm~ �
βx3

zpf

Ωm~ .
For example, for the mode discussed in Figure 6

in the main text and Supplementary Figure 2 and 3,
βx3

zpf

kx2
zpf

= 5× 10−4 and
αx4

zpf

kx2
zpf

= 8× 10−7.

We can thus approximate

Ω[n] =
En+1 − En

~

= Ωm +
λ3(n+ 1)x4

zpf

~

(
α− λ20

9

x2
zpfβ

2

~Ωm

)
,

which allows us to write the cubic nonlinearity as an
effective modification to the Duffing nonlinearity.
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Spectral function calculation with Lindblad
master equation

We numerically solve the spectral function of the non-
linear resonator, using the full Lindblad master equa-
tion of the open quantum system comprising the res-
onator and its environment.

The Hamiltonian of the nonlinear mechanical mode
H = p2

2meff
+ 1

2k x
2 + 1

3βx
3 + 1

4αx
4 can be written in

terms of the eigenstates |j〉 and eigenvalues Ej as
H =

∑
j Ej |j 〉〈 j|. The eigenstates and eigenvalues

are obtained by numerically discretizing and diago-
nalizing the Hamiltonian.

The oscillation amplitude can be written in terms
of the eigenbasis as

x =
∑
k>j

(xjk |j〉 〈k|+ h.c.) +
∑
j

xjj |j〉 〈j| , (23)

with matrix elements xjk = 〈j |x| k〉. The quantum
master equation of the mechanical mode coupled to
a bath of environmental modes can be derived us-
ing the standard perturbation theory approach in the
eigenbasis [1]. Omitting the fast rotating terms in the
system-bath coupling, we obtain the Lindblad master
equation:

d%

dt
= −i [H, %] + L% (24)

with

L =
Γ

2

∑
k>j

|xjk|2
(

(nth [δEkj ] + 1)Djk

+nth [δEkj ]Dkj

)
,

(25)

where % is the density matrix of the mechanical

mode, nth [δEkj ] =
(
e~δEkj/kBT − 1

)−1
is the ther-

mal phonon occupation number at temperature T for
the frequency difference δEkj = Ek−Ej between the
states k and j, and

Djk % = 2 |j〉 〈k| % |k〉 〈j| − |k〉 〈k| %− % |k〉 〈k| (26)

is the Lindblad superoperator for the jump operation
|j〉 〈k|. The difference between Eq. (24) and the stan-
dard master equation for a quantum harmonic oscil-
lator stems from the nonlinearity in the Hamiltonian,
which perturbs the equal energy level spacing.

Defining amplitude operators ε+ =∑
k>j xjk |j〉 〈k| and ε− = (ε+)

†
, one can calcu-

late the correlation function G[τ ] of the mechanical
amplitude as a function of the separation time τ :

G[τ ] =
〈
ε− [t+ τ ] ε+ [t]

〉
t→∞ . (27)

Here we used the Heisenberg representation for
the time-dependent operator ε such that ε[t] =

eiH̃t ε e−iH̃t with H̃ the total Hamiltonian of the me-
chanical mode coupled to the bath modes.

Applying the quantum regression theorem [2], we
write the correlation in Eq. (27) as a trace over the

Hilbert space of the mechanical mode. In doing so, we
introduce the stationary density matrix of the master
equation (24) %ss, which is obtained by setting d%

dt = 0
in Eq. (25). The correlation function then becomes:

G[τ ] = Trs
[
ε−eLτ

(
ε+%ss

)]
. (28)

These equations are implemented numerically [3] to
find the solution of G[τ ]. The spectral function
Sxx[Ω] can then be obtained as the Fourier trans-
formation of G[τ ]:

Sxx[Ω] =
1

2π

∫ ∞
−∞

e−iΩτG[τ ] dτ. (29)

Superfluid phononic crystal

K M

 Γ

(a) (b)

Figure 1: (a) Unit cell for hexagonal honeycomb lat-
tice with periodicity a. (b) First Brillouin zone with
symmetry points for the reduced wave vector.

We have used the finite element simulation (FEM)
tool COMSOL Multiphysics® to model highly con-
fined third sound modes in a superfluid crystal lat-
tice by solving the hydrodynamic equations for third
sound: The linearized Euler equation

~̇v + ~v · ∇~v = −3α

d4
~∇η, (30)

and the continuity equation for the film height

η̇ + ~v · ~∇η = −d ~∇ · ~v. (31)

While the software does not include ready-made
solvers for the third sound, one can map the equa-
tions to those for (first) sound in an ideal gas—
as outlined in Ref. [4]. From the hexagonal unit
cell in Supplementary Figure 1 with lattice constant
a, Floquet boundary conditions on the outer edges
and free boundary conditions on the inner edge, the
band structure is modeled by performing a station-
ary eigenfrequency analysis swept over the Floquet
vector

~k = (k1b1x + k2b2x, k1b1y + k2b2y) (32)

with k1 and k2 dimensionless parameters between 0
and 1 to cover the entire first Brillouin zone,

~b1 =

(
2π

a
,
−2π√

3a

)
(33)
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Figure 2: Mode amplitude η[r, θ] for 30 MHz third
sound in a 11 nm thick superfluid film condensed on
a suspended silicon slab (with van der Waals coeffi-
cient avdw = 3.5× 10−24 m5 s−2 [5]) perforated with
55 nm diameter holes and 100 nm periodicity. Pan-
els (a) and (b) show the horizontal and vertical cross
sections respectively, in comparison to the 31 MHz
fundamental Bessel mode confined with free bound-
ary conditions to a radius of 56 nm. Finite element
method simulations.

the first reciprocal lattice vector, and

~b2 =

(
0,

4π√
3a

)
(34)

the second reciprocal lattice vector.
For example then, the band structure for a d =

11 nm thick superfluid film on an a = 100 nm lat-
tice with 55 nm diameter holes is shown on Fig. 6 in
the main text and is found to have a band gap be-
tween 29 and 30.5 MHz. By modeling the full crystal
with a chosen amount of unit cells in either direc-
tion and the central hole removed to form a cavity,
we obtained the mode amplitude η[r, θ] and the areal
energy density

u = ρα

(
−η
d3

+
3η2

2d4

)
(35)
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Figure 3: Finite element model of the quality factor
for a 30 MHz third sound mode in 11 nm thick super-
fluid film condensed on a suspended silicon slab per-
forated with 55 nm diameter holes and crystal lattice
constant 100 nm.

for the 30 MHz mode in the band gap. The ampli-
tude η is shown in Supplementary Figure 2 for a lat-
tice comprising approximately 16 cells in either di-
rection. It is compared to the amplitude found for
a tiny crystal comprised of only two cells in either
direction. It can be seen that while the mode profiles
diverge slightly farther away from the central defect,
they overlap in the central region.

Since the cavity confinement in the crystal is not
quite a perfectly circular confinement, it is instruc-
tive to look for the circular Bessel mode most closely
resembling the profile of the trapped mode. For the
present parameters, that is the R = 56 nm fundamen-
tal mode plotted in Supplementary Figure 2. Its fre-
quency is 31 MHz (cf. 30 MHz for the trapped mode).
From the latter, we can estimate the intrinsic single-
phonon nonlinear shift: here δΩ[αeff]/2π = 35 Hz.
That means that a Q-factor Q = Ωm/Γ in excess of
106, or Q · f ≥ 6× 1013 Hz is necessary to resolve the
granular nature of the resonator.

The energy density is plotted for the same two
lattices on the right panel of Supplementary Figure
3. The left panel shows the quality factor associ-
ated with acoustic radiation loss. As the number of
cells in the lattice increases, the quality factor in-
creases exponentially and exceeds 106, the threshold
for single-phonon resolution, for 10-cell lattices.

2. Supplementary Discussion

Dissipation of energy

Energy contained in superfluid 4He third sound may
decay through several different channels. Under-
standing ways energy can dissipate is especially im-
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portant in the third sound resonator, since the res-
olution of intrinsic single-phonon statistics requires
the damping Γ to be smaller than the the single-
phonon resonance shift δΩ. Experimentally, it has
been observed that Q · f products (the product of a
resonator’s quality factor and frequency) in nanome-
chanical systems tend to lie below 1016 Hz [6], al-
though much larger Q · f values exceeding 1019 have
been reached recently by use of phononic crystal cav-
ities [7]. It nonetheless is reasonable to require Qf
products for single-phonon nonlinear third-sound res-
onators to lie below that limit, within the regime
of operation of the majority of nanomechanical res-
onators.

Firstly, dissipation mechanisms involving the role
of large densities of pinned vortices have been pro-
posed to account for the observed dissipation in ex-
periments [8, 9]. Our recent work on optomechanical
detection of vortices however appears to rule out such
large remnant vortex densities on smooth microfab-
ricated third sound resonators [10]. In addition, the
sound-vortex coupling is known from theory to in-
crease with decreasing resonator area [4], resulting in
a further reduction of vortex pinning and therefore
further reduction of vortex-induced dissipation. (See
main article text.)

Secondly, in the two-fluid model of superfluid third
sound, the superfluid component oscillates while the
normal fluid component remains stationary. This
leads to temperature gradients between the colder
wave peaks and warmer troughs [11], and these tem-
perature gradients can lead to thermal energy dis-
sipation through evaporation and recondensation of
helium atoms between the peaks and troughs of the
wave, as well as irreversible heat flow through the
substrate [11–13]—forming in essence an analog of
the thermo-elastic damping encountered in mechani-
cal resonators [14].

Finally, a fundamental loss mechanism remains
the acoustic energy radiated out of the resonator
due to imperfect wave reflection at the resonator
boundary—corresponding for instance to the acous-
tic energy lost through the pedestal in the case of
a superfluid-coated microdisk or microtoroid geome-
try [10,15,16]. This dissipation mechanisms plays the
role of clamping losses in micromechanical resonators
[17], and, as in the case of solid microresonators, may
be suppressed through the use of a phononic bandgap
structure [18, 19]. In particular, the damping Γ de-
creases exponentially for modes trapped in phononic
lattices with an increasing number of cells.

We study in detail the process of thermal dissi-
pation and acoustic radiation in the following two
Sections.

Thermal dissipation

In the usual limit, third sound waves are treated as
an oscillation in the height of the superfluid compo-

Figure 4: Third sound wave quality factor as a func-
tion of frequency and temperature for a film thick-
ness of 11 nm. The physical properties of the film
and substrate have been taken from [20–24].

nent of the film, with the normal component viscously
clamped and therefore of constant height. This ap-
proximation is valid so long as the normal-fluid pen-
etration depth dp = (2vn/Ωρn)1/2 is larger than the
film thickness d, where vn is the viscosity of the nor-
mal fluid and Ω is the frequency of the wave. In this
case, the motion of the sound wave creates oscillating
regions of high and low superfluid-to-normal fluid ra-
tio. This changing ratio corresponds to a change in
the temperature in the thin film between crests and
troughs of the third sound wave. Heat will then flow
from troughs to crests, dissipating energy.

Bergman derived a solution for the complex
speed of third sound plane waves c3, including
both evaporation-condensation and thermal damp-
ing through the substrate [13]. However, Bergman’s
equations are highly complex and difficult to solve.
In earlier work, Atkins presented an alternative sim-
pler solution [11], making a series of approxima-
tions about the film thickness, thermal dissipation
mechanisms and third sound frequency. In the thick
film/high frequency limit (as would be the case here),
attenuation of third sound is dominated by the phe-
nomenon of evaporation and condensation of helium
atoms between the film and the gas [13]. In this
limit, the attenuation derived by Atkins differs from
Bergman’s more complete analysis only by a factor
of 16/9 [13], and provides therefore a reasonable
estimate of the expected magnitude of the thermal
damping. Atkins’ expression for the complex third
sound speed c3 is given by [11]:

c23 =

ρfd
ρHe

+ ρST
ρHe

[(
S − β

ρHe

)
− i KfρHeΩ

]
C − i KL

ρHeΩd

(36)

Where ρHe and ρ are the total fluid density and super-

5



fluid component density, respectively, d is the depth
of the film and f is the van der Waals force per unit
mass at the surface of the film [20]. C, S and L are
the specific heat, entropy and latent heat of evapo-
ration of the film [21]. β is the slope of the vapour
pressure curve and K is the mass flow from evap-
oration both taken from the Vapour Pressure data
published by Donnelly and Barenghi [21]. Solving
this equation for c3 gives the quality factor Q of the
third sound wave via Q = <(c3)/2=(c3).

We use Eq. (36) here to determine the thermal dis-
sipation dominated quality factor for a third sound
wave on a silica substrate as a function of tempera-
tures, film thicknesses and third sound frequencies.

Supplementary Figure 4 shows the thermal dissipa-
tion dominated Q for an 11 nm thick film as a func-
tion of temperature and oscillation frequency. We
chose a frequency range of 1 to 50 MHz , consis-
tent with the range of third sound mechanical res-
onance frequencies expected for confinement length
scales ranging from tens of nanometres to a micron
with this film thickness. We choose a temperature
range of 0.3 to 1.0 K, easily achievable using a stan-
dard dilution refrigerator or helium-3 cryostat. From
the figure we can see that the quality factor improves
dramatically with decreasing temperature, and that
it increases with increasing frequency. This rise with
frequency is expected from Eq. (36), where high fre-
quencies suppresses the complex component respon-
sible for the damping. This effect of high frequency
reducing damping also arises in thermoelastic damp-
ing where there is a characteristic time for the tem-
perature fluctuation from a deflected beam to diffuse.
At high frequency the system does not have suffi-
cient time to respond to the change in temperature,
reducing the diffusion of heat through the system
and increasing the Q [25]. The thermal-dissipation-
dominated quality factor exceeds 106 for the entire
frequency range for temperatures beneath 0.4 K.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1000

106

109

Temperature [K]

Q

Figure 5: Third sound wave quality factor as a func-
tion of temperature at 30 MHz for a 11 nm thick film.
The yellow line: rough fit to a T 17 dependence.

At low temperature the film has almost no normal
fluid component. The difference in the proportion

of superfluid component at the peaks and troughs of
the third sound wave is reduced as a result, which
reduces the temperature gradient. This causes the
thermal damping to drop significantly as the normal
fluid fraction drops. This dependence can be seen
in Supplementary Figure 5. The third sound wave
frequency and film thickness in this case are chosen
to match the phononic crystal cavity mode shown
in Fig. 6(b) of the main text. As can be seen, the
predicted thermal-dissipation-dominated quality fac-
tor exceeds 106 at temperatures beneath 0.5 K, so
that (as discussed in the main text) thermal dissipa-
tion should not preclude reaching the single phonon
nonlinear regime. The fit in Supplementary Figure 5
shows a rough temperature dependence of Q ∝ T 17,
showing the dramatic suppression of thermal dissipa-
tion with decreasing temperature.

Figure 6: Third sound quality factor as a function of
film thickness and frequency, at a temperature of 400
mK.

Supplementary Figure 6 shows the dependence of
the thermal-dissipation-dominated third sound qual-
ity factor on frequency and film thickness for a fixed
temperature of 0.4 K. This shows that the quality
factor is predicted to decrease as the film thickness
reduces. It also illustrates, again, the strong increase
in quality factor predicted with increasing frequency.

Critical velocity

Liquid helium retains its superfluidity only as long
as the particle velocity in the fluid v remains below
its critical velocity vc, i.e. v

vc
< 1. Since this work

is concerned with strong confinement of superfluid
films, it is important to verify that superfluidity is
retained for all radii R and film thicknesses d consid-
ered. From Ref. [11], v/vc = ρ

ρHe

<x>
d [11].
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Figure 7: Ratio of superfluid particle velocity to crit-
ical velocity vc. (a) Zero-point motion velocity vzpf

and (b) thermal motion velocity vth at 0.5 K. Shaded:
regime of single-phonon nonlinear third-sound res-
onator. Red lines indicate vzpf = vc and vth = vc

crossovers. Hatched: region outside of validity of this
work (d ≥ R)

We consider two cases, first the case where the
third sound mode is cooled to its motional ground
state, and second the case where it is thermalized at
temperature T . In the former case, the velocity ratio
is

vzpf

vc
=

ρ

ρHe

xzpf[R, d]

d
, (37)

where vzpf is the zero point velocity, while in the lat-
ter case it is

vth

vc
=

ρ

ρHe

xzpf[R, d]

d

√
1 +

2

e~Ωm[R,d]/kBT − 1
. (38)

In Supplementary Figure 7 we show these two ra-
tios as a function of the radius of the third sound
mode and the superfluid film thickness, taking T =
0.5 K for the thermalized mode. It can be seen from
these figures that the regime of operation we consider
in the main text for nonlinear superfluid resonators
(shaded) lies far outside of the regime where superflu-
idity breaks down, both for a third-sound resonator
in its ground state (Supplementary Figure 7a) and for
one cooled to 0.5 K (Supplementary Figure 7b). Even
in the most extreme parameters probing the limits
of our model (T = 0.5 K, R = 20 nm, d = 5 nm),

the particle velocity remains two orders of magnitude
lower than the critical velocity (vc = 250 vth).

We finally note that, while it might be expected
that the particle velocity would increase with decreas-
ing film thickness from the explicit inverse-d depen-
dence of both Eqs. (37) and (38), in fact the opposite
is predicted. This is due to the dependence of the
resonator’s spring constants and zero-point motion
on the film thickness d, as derived in Eq. (9-11) and
(23) in the main text.

Supplementary References

[1] Gardiner, C. & Zoller, P. Quantum Noise.
Springer Series in Synergetics (Springer, 2004),
3 edn.

[2] Lax, M. Formal theory of quantum fluctuations
from a driven state. Phys. Rev. 129, 2342–2348
(1963).

[3] Tan, S. M. A computational toolbox for quan-
tum and atomic optics. J. Opt. 1, 424–432
(1999).

[4] Forstner, S. et al. Modelling of vorticity, sound
and their interaction in two-dimensional super-
fluids. New J. Phys. 21, 053029 (2019).

[5] Sabisky, E. S. & Anderson, C. H. Onset for su-
perfluid flow in he4 films on a variety of sub-
strates. Phys. Rev. Lett. 30, 1122–1125 (1973).

[6] Aspelmeyer, M., Kippenberg, T. J. & Mar-
quardt, F. Cavity optomechanics. Rev. Mod.
Phys. 86, 1391–1452 (2014).

[7] Ren, H. et al. Two-dimensional optomechanical
crystal cavity with high quantum cooperativity.
Nat. Commun. 11, 3373 (2020).

[8] Penanen, K. & Packard, R. E. A Model for Third
Sound Attenuation in Thick 4He Films. J. Low
Temp. Phys. 128, 25–35 (2002).

[9] Hoffmann, J. A., Penanen, K., Davis, J. C. &
Packard, R. E. Measurements of attenuation of
third sound: Evidence of trapped vorticity in
thick films of superfluid 4he. J. Low Temp. Phys.
135, 177–202 (2004).

[10] Sachkou, Y. P. et al. Coherent vortex dynamics
in a strongly interacting superfluid on a silicon
chip. Science 366, 1480–1485 (2019).

[11] Atkins, K. R. Third and fourth sound in liq-
uid helium II. Phys. Rev. 113, 962–965 (1959).
arXiv:1011.1669v3.

7

arXiv:1011.1669v3


[12] Bergman, D. Hydrodynamics and Third Sound
in Thin He II Films. Phys. Rev. 188, 370–384
(1969).

[13] Bergman, D. J. Third sound in superfluid helium
films of arbitrary thickness. Phys. Rev. A 3,
2058–2066 (1971). arXiv:1011.1669v3.

[14] Lifshitz, R. & Roukes, M. L. Thermoelastic
damping in micro- and nanomechanical systems.
Phys. Rev. B 61, 5600–5609 (2000).

[15] Harris, G. I. et al. Laser cooling and control of
excitations in superfluid helium. Nat. Phys. 12,
788–793 (2016).

[16] He, X. et al. Strong optical coupling through
superfluid brillouin lasing. Nat. Phys. (2020).

[17] Nguyen, D. T. et al. Ultrahigh Q-frequency
product for optomechanical disk resonators with
a mechanical shield. Appl. Phys. Lett 103,
241112 (2013).

[18] Tsaturyan, Y., Barg, A., Polzik, E. S. &
Schliesser, A. Ultracoherent nanomechanical
resonators via soft clamping and dissipation di-
lution. Nat. Nanotechnol. 12, nnano.2017.101
(2017).

[19] Condat, C. A. & Kirkpatrick, T. R. Third-sound
propagation on a periodic substrate. Phys. Rev.
B 32, 4392 (1985).

[20] Baker, C. G. et al. Theoretical framework for
thin film superfluid optomechanics: Towards the
quantum regime. New J. Phys. 18, 123025
(2016). 1609.07265.

[21] Donnelly, R. J. & Barenghi, C. F. The Observed
Properties of Liquid Helium at the Saturated
Vapor Pressure. J. Phys. Chem. Ref. Data 27,
1217–1274 (1998). Publisher: American Insti-
tute of Physics.

[22] Jensen, J., Stewart, R. G., Tuttle, W. &
Brechna, H. Brookhaven national laboratory se-
lected cryogenic data notebook: sections I-IX,
vol. 1 (Brookhaven National Laboratory, 1980).

[23] Molinari, V., Mostacci, D. & Ganapol, B. D.
The specific heat of liquid helium. J. Comput.
Theor. Transp. 45, 212–218 (2016).

[24] Zeller, R. & Pohl, R. Thermal conductivity and
specific heat of noncrystalline solids. Phys. Rev.
B 4, 2029 (1971).

[25] Schmid, S., Villanueva, L. G. & Roukes, M. L.
Fundamentals of nanomechanical resonators,
vol. 49 (Springer, 2016).

8

arXiv:1011.1669v3
1609.07265

	Supplementary Methods
	Supplementary Discussion
	

