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I. SPRING COUPLING

Instead of evanescent coupling, as used in this paper,
coupling between mechanical systems can be achieved
with spring coupling via direct real phonons as used when
connecting resonators with free suspended beams (see fig-
ure 1 (a) and (b)) [1–3]. These two techniques are how-
ever quite different. Indeed, as described in the theoret-
ical section of the main text, in the tunnelling coupling
case, the acoustic wave vector is imaginary in the barrier
but is real in the case of spring coupling (see figure 1 (c))
which is exactly what distinguishes transfers via real and
virtual phonons. For this reason, at specific frequencies
or beam lengths the acoustic wave may resonate in the
free beam, which is not the case for evanescent coupling
since the wave decays exponentially along the barrier.
The coupling rate between two resonators connected via
a free beam will be influenced by the resonances of the
beam as shown in figure 1 (d) which oblige to rely on an
off-resonance situation of the coupler [4]. This greatly
reduces the ability to control the coupling strength com-
pared to an evanescent barrier leading to a reduction of
the system’s bandwidth of operation and fabrication tol-
erances. In addition energy up to 50% of the total energy
of the mechanical system can be captured by the free
beam coupler. By contrast, only 0.03% of the energy is
stored in the coupler in the case of evanescent coupling as
displayed in figure 1 (e) showing that the energy mostly
stays distributed in the resonators when coupled with
tunnelling.

MEMS and sensing applications ranging from clocks,
memories, spin detection [5], inertial [6] and mass sens-
ing [7] benefit from high-Q resonators which require large
isolation from the environment and very low controllable
coupling rates. Such configuration can be challenging to
fabricate with spring coupling, as it would require either
free suspended beams much longer than the resonator it-
self or very narrow coupling beams. Indeed, as shown in
figure 1 (d), the coupling rate achievable with a 1.2 mm
long coupler can be three orders of magnitude lower us-
ing tunnelling coupling instead of spring coupling (0.2 Hz
compared to 500 Hz). In addition, according to our sim-
ulations, a coupling rate of 100 Hz can be achieved with
a tunnel barrier of ∼350 µm (see figure 1 (d)) but neces-
sitate a free beam longer than 4 cm (data not shown),
increasing the device foot print by two orders of magni-
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tude for this example. In addition, because the coupling
rate scales exponentially in the case of tunnelling, we ex-
pect that this foot print reduction will greatly increase
when lower coupling rate are needed to be achieved.

A. Mode filtering

We demonstrated in the main text mode filtering using
evanescent coupling. Since spring coupling is fundamen-
tally different, one can wonder if filtering can also be
achieved with real phonons. This is possible by leverag-
ing the symmetry of the spring modes and waveguides
mode but adds complexity to the device. Let’s consider
the configuration where the coupling spring is attached
to the middle (in the transverse direction) of the input
and output waveguide (as shown between the two square
membranes of figure 1 (a)). In this configuration, the
spatial overlap between a symmetric spring mode and an-
tisymmetric input or output modes is zero and vice versa.
Consequently, when the input waveguide is excited at a
frequency where the first two modes can propagate, if a
symmetric transverse spring mode is used to couple the
two waveguides, only the first mode will be transmitted
resulting in mode filtering. The opposite is true when an
antisymmetric spring mode is used leading to filtering of
the fundamental guide mode.

Compared to mode filtering using tunnelling, this has
again the disadvantage of been frequency dependant since
symmetric and antisymmetric spring modes will have dif-
ferent frequencies. Moreover, the efficiency of the filter
can not be tuned by changing the length of the coupler
as for tunnelling. Instead, the coupler can be fabricated
off-centred in the transverse direction to increasing the
overlap between symmetric and antisymmetric modes.
This strategy allows tuning of the coupling into both
modes using a spring coupler but is more complex to pre-
dict than evanescent coupling as knowledge of the three
modes shapes is needed.

II. INFLUENCE OF THE MESH ON THE WAVE
PROPAGATION

To determine the influence of the mesh on the propa-
gation of the acoustic wave, we use finite element simu-
lations. We simulated an infinite waveguide actuated by
acoustic waves with wavevectors ky including the range
of wavevectors used in the main text. The frequency of
the wave is then calculated to determine the dispersion
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Figure 1. Mechanical coupling simulations. (a) Two square membranes (2 mm×2 mm) mechanical resonators coupled via a
free beam. (b) Two mechanical resonators coupled via a tunnel barrier. The insets in (a) and (b) represent the top view of the
devices. (c) Dispersion relation of the coupling element of the tunnel barrier (blue) and the free beam (red). The resonances
of the free beam are represented by the dots along the red line. (d) Coupling rate between the two resonators as function of
the length of the coupling element for both cases. (e) Energy stored in the coupling element normalised to the total energy as
function of the length of the coupling element for both cases.

relation of the waveguide. As shown in figure 2, this sim-
ulation is performed on waveguides without mesh (top
diagram) and with meshes of three different hole sizes
(remaining diagrams). The finer pattern correspond to a
mesh with holes of 1 µm as used in our device presented
in the main text. The second pattern from the bottom
corresponds to a mesh with hole size of 9 µm and the bot-
tom pattern to hole size of 26 µm. Clear perturbation of
the propagation can be seen on the dispersion relation of
the waveguide with the 26 µm holes (blue trace) similar
to what is observed in phononic crystals [8]. However,
the dispersion relation of the 9 µm hole mesh (red trace)
follows the trend of the dispersion relation of the non-
patterned membrane (purple trace) and the 1 µm hole
mesh (yellow trace) is in even closer agreement. Simula-
tions of the dispersion relation of waveguides with even
finer meshes (not shown here) do not converge towards
the dispersion relation of the non-patterned waveguide
and maintain similar dispersion relations to that of the
1 µm hole mesh. This behaviour is expected because the
mesh modifies both the density ρ and the stress σ of the
membrane (see Appendix A of the main text) resulting

in a change in the wave velocity v =
√
σ/ρ and an offset

in the dispersion relation compared to a non-patterned
membrane (see Eq. 1 of the main text).

To determine this offset, we used simulation to com-
pare the resonance frequencies of a squared membrane
with and without a 1 µm hole meshed and we find a
reduction of the resonance frequencies by a factor of 0.9
when the mesh is present. Since these resonance frequen-
cies are proportional to v we concluded that the wave
velocity in a meshed waveguide is reduced by 0.9. This
was further verified experimentally in figure 3. In this
figure, we compare the observed resonance frequencies of
a waveguide (red trace) with corrected wave velocity the-
oretical predictions (grey trace). One can clearly see that
the corrected predictions are in excellent agreement with
the experimental data.

We thus concluded that the meshed does not perturb
the propagation of acoustic waves for the range of fre-
quencies/wave vector used in the experiment of the main
text. The behaviour of our waveguides can then be pre-
dicted accurately by the dispersion relation of a non-
patterned waveguide with a wave velocity reduced by a
factor 0.9.
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Figure 2. Simulated dispersion for different mesh sizes. The purple curve corresponds to the dispersion relation of a infinite
non-patterned waveguide. The yellow, red and blue curves correspond to a infinite waveguide patterned with 1 µm, 9 µm and
26 µm holes mesh respectively. The unitary cell repeated to construct each infinite waveguides is shown on the right where the
colors represent the displacement created by an acoustic wave of infinite wavelength (k=0). Note that the bottom unitary cell
is an example of unitary cell used to create the mesh.

Figure 3. Network analysis compared with theoretical predictions. The red trace represents the experimental network response
of a meshed waveguide excited at different frequencies and exhibits resonances. These resonance frequencies are compared with
theoretical predictions with a wave velocity corrected by a factor 0.9 (grey traces).

III. MECHANICAL NONLINEARITIES

Setting aside the intrinsic material nonlinearities, aris-
ing from the higher order corrections to the material’s
stiffness tensor, the main source of mechanical nonlinear-
ities are geometric nonlinearities, arising due to surface
and area changes brought about from the eigenmode de-
formation. In order to illustrate the different role played
by geometric nonlinearities, we consider the flexural and
longitudinal modes of a beam resonator in figure 4. For
the case of out-of-plane motion of a doubly-clamped
beam (or string), the geometric nonlinearity leads the
linear spring term k x to be supplemented by an addi-
tional nonlinear restoring force αx3 with α > 0, arising
from the extra tensioning of the beam due to its elonga-

tion for large excursions from equilibrium [9]. This is the
classic Duffing nonlinearity, leading to an additional stiff-
ening of the resonators confining potential α4 x

4, as shown
by the green dashed line in figure 4 (c), and an amplitude-
dependent increase the resonator’s eigenfrequency. In the
case of longitudinal motion (figure 4 (b)), the geomet-
ric nonlinearity arises from changes in the cross-sectional
area of the beam. However, in contrast to the case of out-
of-plane motion—where stiffening occurred in both up
and down directions— here the stiffening is followed by
softening during a mechanical oscillation, as the beam’s
cross-section is successively enlarged and reduced. This
leads to a different nonlinear restoring force of the type
βx2, leading to a correction to the trapping potential of
the form β

3x
3, as illustrated by the dashed orange curve
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in figure 4 (c). The net effect of such a nonlinearity is
only a modest spring softening, which can be absorbed
into an effective correction to the Duffing nonlinearity
[10, 11]. For this type of motion, the geometric nonlin-
earity is sufficiently weak that strong nonlinearities are
typically only achieved, in the case of silicon, by reach-
ing the material’s intrinsic nonlinearities, at much higher
energy densities [9, 12].

IV. NANOMECHANICAL MASS SENSING

Nanomechanical resonators have been widely demon-
strated as a tool to measure mass with exquisite preci-
sion, even down to yoctogram [13]. The principle of op-
eration is that a deposited particle of mass ∆m changes
the resonance frequency Ω of the mechanical resonator by
increasing its mass from m to m+ ∆m without altering
its spring constant k = mΩ2. Then the shifted frequency
Ω′ =

√
k/(m+ ∆m) ≈ Ω(1−∆m/2m) for ∆m� m. We

see then that the frequency shift is ∆Ω/Ω = −∆m/2m
motivating the use of a low mass mechanical oscillator.

Two methods to resolve the frequency shifts have
proved highly effective in the literature [14]: 1-feedback
can be introduced to cause the mechanical resonator to
regeneratively oscillate, greatly increasing the precision
with which a frequency shift can be observed; 2-the me-
chanical resonator can be driven on resonance with an
external sinusoidal drive force in a phase locked loop
configuration, with the phase shift providing a precise
measure of the resonance frequency. Either way, it has
been shown that the minimum resolvable mass change is
approximately [14, 15]

δm ≈ 2m

(
Eth
En

)1/2(
∆f

QΩ

)1/2

, (1)

where Eth = kBT is the thermal energy in the resonator,
with T its temperature and kB Boltzmann’s constant,
En is the energy of the coherent oscillation after regen-
erative amplification or coherent driving, and ∆f is the
measurement bandwidth in Hertz (all other frequencies
are angular).

Without loss of generality, we consider henceforth the
case of coherent driving, using a phase locked loop for
readout. The expression above can be written in terms
of the amplitude of the applied force F on the resonator
and its frequency Ω by recognising that En = kx2/2,
where x is the amplitude of mechanical oscillation, and
that for resonant driving x = FQ/mΩ2 [16]. We then
find

δm =
√

8kBT∆f × 1

F

(
m3Ω

Q3

)1/2

. (2)

This shows that for fixed temperature and drive force,
the sensitivity improves with increasing Q and decreas-
ing m and Ω. Given that, for a given mass, out-of-
plane acoustic waves generally have significantly lower

frequency than compressional waves, this suggests that
mass sensing should be more effective using out-of-plane
motion. The ability to increase the Q of out-of-plane
modes by introducing tensile stress can further be ex-
pected to provide an advantage for out-of-plane modes.

To put this on a rigorous footing, we consider a
resonator that is rectangular with dimensions (length,
width, thickness) = (l, w, t). Compressional and out-of-
plane modes in such a geometry have closely similar ef-
fective masses, therefore we take the masses to be equal.
We also assume that the drive force, measurement band-
width, and temperature are the same, to ensure a fair
comparison. The ratio of the mass sensing performance
is then

δmcomp

δmstrg
=

(
Ωcomp

Ωstrg

)1/2

×
(
Qstrg

Qcomp

)3/2

. (3)

1. Mode frequencies

The compressional modes have frequency [17]

Ωcomp =
nπ

l

√
E

ρ
, (4)

where n is the mode number, E is Young’s modulus and
ρ is the density of the medium; while out-of-plane string
modes have frequency [17]

Ωstrg =
nπ

l

√
E

ρ

(
1

12

(
πnt

l

)2

+
σ

E

)1/2

, (5)

where σ is the tensile stress of the string. We see then
that the ratio of resonance frequencies is

Ωcomp

Ωstrg
=

(
1

12

(
πnt

l

)2

+
σ

E

)−1/2
. (6)

Taking the highly stressed limit for out-of-plane modes,
where the σ term dominates, we can simplify this expres-
sion to

Ωcomp

Ωstrg
=

√
E

σ
. (7)

2. Quality factor

Compared to a compressional mode, an out-of-plane
mode under tension experiences a dilution of its dissipa-
tion, boosting its quality factor above the intrinsic mate-
rial limit Qintrinsic. Indeed, the quality factor of a string
under tensile stress is [17]

Qstrg =

(
1

12

(
nπt

l

)2
E

σ
+

1√
3

(
t

l

)√
E

σ

)−1
Qintrinsic.

(8)
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Figure 4. Mechanical nonlinearities. (a) Out-of-plane motion of a beam resonator, showing the deflection extrema, with inset
illustrating the origin of the Duffing nonlinearity. (b) Longitudinal eigenmode of the beam. (c) Effect of nonlinearities on the
confining potential E.

Note, here that the quality factor increases as the aspect
ratio l/t increases.

To enable a simple comparison, we assume that the
intrinsic quality factor is the same for compressional and
out-of-plane modes, we then find a quality factor en-
hancement

Qstrg

Qcomp
=

(
1

12

(
nπt

l

)2
E

σ
+

1√
3

(
t

l

)√
E

σ

)−1
. (9)

To obtain a simple dependence, we take the appropriate
limit of a high aspect ratio (l/t large) so that the first
term under the square-root can be neglected. We then
find

(
Qstrg

Qcomp

)
large aspect ratio

=
√

3

(
l

t

)√
σ

E
. (10)

3. Comparison of mass sensing performance

Combining the Ω and Q dependence, we find the ratio
of resolvable masses(

δmcomp

δmstrg

)
σ large

= 33/4
(
l

t

)3/2 ( σ
E

)1/2
. (11)

Since E/σ ∼ 200, but (l/t) ∼ 103 to 104, we see that –
at least in the case where the dissipation is limited by
intrinsic dissipation (which is now routinely reached in
many cases) – the performance of a string mode with high
tensile stress can be expected to exceed that of a com-
pressional mode by four to five orders of magnitude. We
note that these conclusions depend on the assumption of
a fixed drive force. This is an appropriate assumption in
many cases, since it can be challenging to strongly drive
nanomechanical devices. An alternative assumption that
could be taken is that the amplitude of mechanical mo-
tion is limited by appearance of nonlinearities in the dy-
namics, and that the drive force is sufficient to reach this
regime. It has recently been shown that different conclu-
sions can be drawn under this assumption [18].
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[5] J. Košata, O. Zilberberg, C. L. Degen, R. Chitra, and
A. Eichler, “Spin detection via parametric frequency con-
version in a membrane resonator,” Physical Review Ap-
plied, vol. 14, no. 1, p. 014042, 2020.

[6] D. K. Shaeffer, “Mems inertial sensors: A tutorial
overview,” IEEE Communications Magazine, vol. 51,
no. 4, pp. 100–109, 2013.

[7] S. Marquez, M. Álvarez, J. A. Plaza, L. Villanueva,
C. Domı́nguez, and L. M. Lechuga, “Asymmetrically cou-
pled resonators for mass sensing,” Applied physics letters,
vol. 111, no. 11, p. 113101, 2017.

[8] M. Kurosu, D. Hatanaka, K. Onomitsu, and H. Yam-
aguchi, “On-chip temporal focusing of elastic waves in
a phononic crystal waveguide,” Nature communications,
vol. 9, no. 1, pp. 1–7, 2018.

[9] V. Kaajakari, T. Mattila, A. Oja, and H. Seppa, “Non-
linear limits for single-crystal silicon microresonators,”
Journal of Microelectromechanical Systems, vol. 13,
pp. 715–724, Oct. 2004.

[10] R. Lifshitz and M. Cross, “Nonlinear dynamics of
nanomechanical and micromechanical resonators,” Re-
views of nonlinear dynamics and complexity, vol. 1,
pp. 1–52, 2008.

[11] Y. L. Sfendla, C. G. Baker, G. I. Harris, L. Tian, R. A.
Harrison, and W. P. Bowen, “Extreme quantum nonlin-
earity in superfluid thin-film surface waves,” npj Quan-

tum Information, vol. 7, no. 1, pp. 1–12, 2021.
[12] V. Kaajakari, T. Mattila, A. Lipsanen, and A. Oja, “Non-

linear mechanical effects in silicon longitudinal mode
beam resonators,” Sensors and Actuators A: Physical,
vol. 120, pp. 64–70, Apr. 2005.

[13] J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali,
and A. Bachtold, “A nanomechanical mass sensor with
yoctogram resolution,” Nature nanotechnology, vol. 7,
no. 5, pp. 301–304, 2012.

[14] K. Ekinci, Y. Yang, and M. Roukes, “Ultimate limits
to inertial mass sensing based upon nanoelectromechan-
ical systems,” Journal of applied physics, vol. 95, no. 5,
pp. 2682–2689, 2004.

[15] M. A. Taylor, A. Szorkovszky, J. Knittel, K. H. Lee, T. G.
McRae, and W. P. Bowen, “Cavity optoelectromechan-
ical regenerative amplification,” Optics express, vol. 20,
no. 12, pp. 12742–12751, 2012.

[16] This relationship between x and F can be readily ob-
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