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S1 Experimental details

S1.1 Device Fabrication

Silica microdisks are fabricated from a 500 µm-thick silicon handling wafer topped by a two-micron
thick thermal oxide layer (Virginia Semiconductor). Disks are defined in the silica layer through a

1



combination of photolithography (AZ1518 positive resist and HMDS adhesion promoter) and hydroflu-
oric acid (HF) wet-etch. A subsequent XeF2 gas-phase release selectively etches the silicon material
and leaves the silica disks isolated from the substrate atop a silicon pedestal, as shown in Fig.1(b) of
the main text.

Unlike in previous experimental work [1, 2], the fabricated microdisks undergo no laser reflow step
to form a microtoroidal resonator, and maintain their wedged outer sidewalls. This wedge shape serves
a dual purpose: beyond enhancing the optical Q (over a vertical sidewalled microdisk) by making the
device less sensitive to fabrication-induced roughness [3], it also serves to deconfine the optical mode
and maximize the optical field intensity at the top and bottom disk interfaces where the superfluid film
resides, as shown in Fig. S1. Indeed, the value of the WGM electric field at the silica interface should
be optimized in order to maximize the optomechanical coupling rate between light and superfluid [4],
see section S1.4. Fabricated devices show a number of WGM families, with optical Qs in the 105 to
low 107 range.

S1.2 Experimental setup

The microresonator chip is positioned inside a superfluid-tight sample chamber at the bottom of a
Bluefors dilution refrigerator (base temperature 10 mK). Laser light is evanescently coupled into the
microresonators via a tapered optical fiber [1]. Precise fiber positioning is achieved through Attocube
nanopositioning stages. The fiber taper rests on support pads microfabricated on the chip alongside
the resonators [2], in order to eliminate taper drift and fluctuations. The experimental measurements
are performed with the pulse-tube cooler switched off to minimize vibrations. The sample chamber
contains a small volume of alumina nanopowder in order to increase the effective chamber surface area
(by ∼ 10 m2), leading to more precise film thickness control and greater film thickness stability [5].
While at base temperature, 4He gas can be continuously injected from the top of the cryostat into
the sample chamber through a thin capillary. This allows for varying of the film thickness, and thus
in-situ tuning of the Brillouin frequency.

S1.3 Characterization of superfluid film thickness

The thickness of the superfluid film covering the microresonator can be assessed through two indepen-
dent means:

• First, through the magnitude of the WGM wavelength-shift across the superfluid transition
temperature. When sweeping the cryostat temperature down from 1.1 K to 0.2 K, all WGMs
acquire a positive wavelength shift corresponding to the increased optical path length due to the
condensation of the superfluid film on the resonator surface1, as shown in Fig. S1. Each WGM
experiences a frequency shift G

2π∆x, where G = ∂ω0
∂x is the optomechanical coupling strength

describing the optical cavity angular resonance frequency shift per unit deposited superfluid film
thickness on the resonator boundary ∆x [4, 7]. The value of G is WGM dependent, and can be
calculated through FEM modelling, as detailed in section S1.4 below. With the knowledge of
G, the magnitude of the experimentally measured WGM frequency shift can be converted into
a deposited film thickness.

• Second, through the Brillouin frequency. The Brillouin wavelength is imposed by the wavelength
of light through λB ≈ λlight/2, where λlight is the wavelength of light in the silica given by λ0/neff ,
i.e. the freespace wavelength λ0 divided by the WGM effective index. The Brillouin frequency
ΩB/2π = c3/λB thus informs us on the speed of sound in the superfluid c3, which is given by [8]:

c3 =

√
3
ρs
ρ

αvdw

d3
. (1)

Here the ratio ρs/ρ is nearly one at the low temperature used in our experiments, αvdw =
2.6 × 10−24 m5 s−2 describes the van der Waals interaction between the helium atoms in the

1Indeed, the magnitude of the thermo-optic shift [6] over this temperature range can be neglected.

2



1550 1552 1554 1556 1558 1560
Wavelength (nm)

0.2

0.4

0.6

0.8

1
Tr

an
sm

is
si

on
 (a

.u
.)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.1
Temperature (K)

0

20

40

60

80

100

120

W
av

el
en

gt
h 

Sh
ift

 (p
m

)

1.0

FSR~7.3nm

Δλ~105pm

G~1.68GHz/nm
Mode of interest

(a) (b)

G/2π~2.2 GHz/nm

Figure S1: a) Microdisk optical spectrum, showing a number of high-Q WGMs separated by a ∼ 7 nm
free-spectral-range (FSR). WGM highlighted in gray near 1555 nm is the one used in the experiments.
b) WGM wavelength shift as a function of fridge temperature, for the mode highlighted in (a). The
vertical scatter in the data points is due to the 20 pm repeatability error in the motor sweep of our
tunable laser diode. The inset displays the electric field norm of the (p = 1, mopt = 186) quasi-TE
mode of the structure.

superfluid and the silica disk [4] and d is the superfluid film thickness. The experimentally
measured Brillouin frequency thus provides a second independent estimate of the film thickness
in the experiments.

The film thickness estimation through these two methods is provided in Table S1. We ascribe the
discrepancy to uncertainties in the exact device geometry. Indeed, variations in wedge angle of a few
degrees can shift G by over 30%, by altering the mode confinement of the WGM and its interaction
with the superfluid film. Surface roughness on the microresonator, not taken into account in the
simulations, may also increase the effective surface area of the resonator and result in uncertainties in
the G.

S1.4 Optomechanical coupling G

S1.4.1 Radiation-pressure contribution

We compute the optomechanical coupling strength G = ∂ω0
∂x using FEM modelling software (COMSOL

Multiphysics). The silica microresonator dimensions are measured with a scanning electron microscope
(SEM) and summarized in Table S1. We simulate the optical eigenmodes of the structure, which for
thin disks are defined by their transverse electric (TE) or transverse magnetic (TM) polarization, and
radial and azimuthal mode orders (p,m) [9]. The electric field (E) distribution of the (p = 1, m = 186)
quasi-TE mode of the microdisk is plotted as an inset in Fig. S1(b). G is computed from the E field
distribution through [4]:

G =
−ω0

2

∫∫
interface (εsf − 1)E2 (~r) d2~r∫∫∫

all εr (~r)E2 (~r) d3~r
, (2)

where εr is the relative permittivity and εsf = 1.058 is the relative permittivity of superfluid helium2.
The numerator surface integral is performed over both top and bottom resonator boundaries, while
the normalizing denominator volume integral is performed over all space. We find values of G/2π
clustered around −2.2× 1018 Hz/m for TE modes and around −2.4× 1018 Hz/m for TM modes, with

2This simplified expression is only valid for low index-contrast interfaces, such as the one between superfluid helium
εsf = 1.058 and vacuum ε = 1. In the case of high index-contrast interfaces, one must employ the expression derived by
Johnson et al. [10], which properly accounts for the perpendicular E field discontinuity at the boundary.
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Parameter Symbol Value Units source

Disk radius (top) Rt 30.6 µm SEM
Disk radius (bottom) Rb 38.6 µm SEM
Disk wedge angle - 14 degrees SEM
Film thickness d 6 nm Optical mode shift

8 nm Brillouin frequency
Speed of sound c3 ∼ 5 m/s Eq.(1)
WGM azimuthal number mopt 186 - FEM
Mechanical azimuthal number m 372 - -
Optomechanical coupling rate G/2π −2.17× 1018 Hz/m FEM
Brillouin mode zero-point motion xZPF 9.5× 10−15 m analytical estimation
Single photon coupling strength g0,tot/2π 133 kHz Numerical fit to measurement

g0,rp/2π 11 kHz simulation
g0,fp/2π 122 kHz Numerical fit to measurement

Table S1: Experimental parameters. SEM: Scanning Electron Microscope; FEM: Finite Element
Method.

little influence of the WGM radial order. Higher values of |G| for TM modes is due to their stronger
field at the interface due to the E field discontinuity [4]. We identify our experimental WGM as a
(p = 1,mopt = 186) quasi-TE WGM, as shown in the inset of Fig. S1(b). As mentioned above,
the optomechanical coupling G has a marked dependence on the wedge angle. Indeed, while the
fundamental TE mode’s |G|/2π ∼ 2.2 GHz/nm for a 14 degree wedge angle, this value increases to
2.5 GHz/nm for a 12 degree wedge, and drops to 1.5 GHz/nm for a 20 degree wedge angle. The
contribution to the total G from top and bottom disk interfaces is well balanced, with respectively
51% and 49 % of the total coupling rate coming from top and bottom for the fundamental TE mode.

S1.4.2 Photoelastic contribution

Photoelastic contributions –resulting from the change in dielectric constant in response to strain– have
been shown to be potentially appreciable in bulk superfluid helium experiments [11, 12, 13, 14]. We do
not take these contributions into account however, as our acoustic wave can be well approximated by
a wave in the incompressible limit. Indeed, the observed frequency of the Brillouin acoustic mode in
our experiments is consistent with that of a third-sound wave in the incompressible limit (see section
S1.6), where the restoring force is provided solely by van der Waals and capillary forces. Indeed, if
the bulk modulus of liquid helium (K=8.2 MPa) were the dominant restoring force, the speed of the

acoustic wave would be given by c =
√

K
ρ ' 240 m/s (the speed of first sound). This would lead to a

characteristic Backward Brillouin frequency for 1.5 micron wavelength light upwards of 300 MHz (as
for instance in Ref. [14]), far from what is observed experimentally.

S1.5 Estimation of single photon optomechanical coupling rate g0,rp

Calculation of the single-photon optomechanical coupling rate g0,rp = |G|xZPF [7] requires the Brillouin
mode zero-point motion xZPF. The Brillouin eigenmode can be well approximated through a high-
order azimuthal Bessel mode of a disk, for which the zero-point motion can be calculated analytically
[4], see Fig. S2. The surface displacement η of the travelling Brillouin wave on both top and bottom
surfaces of the disk is given by:

ηm,n (r, θ, t) = η0 Jm

(
ζm,n

r

R

)
cos (mθ ± ΩB t) , (3)

where m and n are respectively the azimuthal and radial mode numbers, η0 the mode amplitude, Jm
the Bessel function of the first kind of order m, and ζm,n a frequency parameter depending on the
mode order and the boundary conditions [4]. Energy and momentum conservation for the Brillouin
scattering process imply that the Brillouin mode azimuthal order be twice that of the optical WGM,
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Figure S2: Example out-of-plane displacement profile of an acoustic whispering gallery-type mode
(superfluid Brillouin wave) of the kind used in the experiments. For clarity, we show here the nor-
malized displacement η120,1 (r, θ) of the m = 120 Bessel mode with free boundary conditions at the
resonator edge [15], which has ∼ 3 times fewer nodes than the experimental m = 372 Bessel mode. The
displacement is essentially localized on the resonator edge, such that the eigenmode is not perturbed
by the presence of the pedestal on the microdisk underside.

i.e. m = 2mopt = 2 × 186 = 372 (see Table S1). Such a mode has its displacement localized on the
periphery of the resonator, well colocalized with the optical field intensity, forming a type of acoustic
whispering gallery mode, as shown in Fig. S2. Note that since the excitations exist on both the
top and underside of the disk, the collective excitation of the film on top and bottom has twice the
effective mass, and hence 1/

√
2 the zero-point motion of a mode residing only on the disk top surface.

The azimuthal overlap between optical and mechanical fields leads to a further factor two reduction:
indeed, 1

2π

∫ 2π
0 2 cos2 (mopt x) cos (mx) dx = 1

2 . Combined, this estimation provides, for the WGM
mode used in the experiments a value of g0,rp = 11 kHz for the radiation pressure component of the
single photon coupling rate. The fountain pressure contribution to the optical forcing, estimated to be
g0,fp = 122 kHz from fitting to numerical simulations, arises from superfluid flow induced from optical
heating [2]. As discussed in the main text, feasible improvements to the device (i.e. reduced optical
and mechanical dissipation and increased optomechanical coupling through changes in disk material
and thickness) can both suppress fountain pressure contributions and substantially increase radiation
pressure effects, allowing the latter to dominate.

S1.6 Influence of surface tension

The dispersion relation giving the angular frequency Ω of a superfluid wave under the influence of van
der Waals and surface tension restoring forces is given by:

Ω =

√
3αvdw k2

d3
+
σ k4 d

ρ
, (4)

where σ = 3.54 × 10−4 N/m is the superfluid 4He surface tension [16] and k = 2π/λ = ζm,n/R the
angular wavenumber. We plot this frequency Ω/2π in Fig. S3, along with the limiting cases of a pure

van der Waals wave (third sound) of frequency Ωvdw/2π = 1
2π

√
3αvdw k2

d3 , and a pure surface tension

wave (ripplon) of frequency Ωσ/2π = 1
2π

√
σ k4 d
ρ . For the film thickness used in the experiment,

the dominant restoring force is the van der Waals interaction, and the Brillouin wave can be well
approximated by a third sound mode. For thicker films (> 13 nm), the restoring force becomes
dominated by surface tension, and the wave crosses over into a ripplon-like regime.
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Figure S3: Frequency ΩB/2π of the Brillouin wave in the presence of both van der Waals and surface
tension restoring forces (green), as well as the limiting cases of the frequency Ωvdw/2π of a pure van
der Waals wave (third sound - blue) and the frequency Ωσ/2π of a pure surface tension wave (ripplon -
orange). Values plotted with k = 107, corresponding to the Brillouin wavenumber in our experiments.

S1.7 Acoustic dissipation

Thanks to its vanishing viscosity [17], superfluid helium may be employed to form extremely low
dissipation mechanical oscillators. Mechanical Q factors in excess of 108 have been predicted and
demonstrated with bulk superfluid 4He resonators [18, 19]. In contrast, acoustic dissipation in super-
fluid helium thin films remains currently poorly understood [20, 21], and is a subject of considerable
interest in its own right [22]. The superfluid third sound waves in this work display quite modest Q
factors on the order of 102. This is more than one order of magnitude lower than observed in our
previous work with superfluid-covered microtoroid resonators [1]. We ascribe the difference to two
main changes. First, and likely more importantly, the resonator pedestal (see Fig. 1 of the main text)
is more than one order of magnitude larger in this work compared to our previous work. This large
pedestal provides a much more efficient channel for acoustic energy scattered by geometrical imper-
fections [23] to radiate out of the resonator, thereby playing a somewhat analogous role to increased
clamping losses in nanomechanics. Second, these devices were not exposed to a final laser reflow step
during their fabrication, as discussed in section S1.1. The chemically-etched wedge is therefore more
rough than the nearly atomically smooth reflown silica toroids of our previous work, and any surface
roughness has the potential to serve as nucleation sites for quantized vortex generation [15], as well as
pinning sites for quantized vortices which may be involved in acoustic dissipation in helium films [20].
Reducing the acoustic dissipation will be addressed in future work. This may be done through im-
proved design of the resonator’s anchoring points to the environment, with for example the use of
spoke-supported structures [24], or of a pedestal incorporating an acoustic shield [25]. Acoustic iso-
lation can also be provided by opening a phononic bandgap through a periodic modulation of the
superfluid wave’s acoustic impedance. This can be achieved for instance through the deposition of
periodically-spaced metal layers which modulate the van der Waals coefficient of the substrate upon
which the superfluid waves propagate [26]. This will create a periodic modulation of the speed of
sound and acoustic impedance experienced by the third sound wave –much like the approach of a
Bragg mirror in optics– and allow for efficient acoustic energy reflection.

S2 Standing-wave versus travelling-wave Brillouin interaction

There has been a recent push to theoretically unify the fields of cavity optomechanics and Brillouin
scattering [27]. While both fields deal with the inelastic interaction of photons with a mechanical de-
gree of freedom (phonons), the Brillouin scattering paradigm often refers to the interaction between a
travelling optical field and a travelling mechanical wave which causes a periodic refractive index mod-
ulation (see Fig. S4(a)). In contrast, the optomechanical paradigm –as illustrated by the archetypal
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Figure S4: (a) Schematic illustration of a travelling wave ‘Brillouin-like’ interaction, where the pump
scatters off a moving refractive index grating, leading to single Stokes sideband generation. (b)
‘Optomechanics-like’ interaction where the pump is scattered by a standing refractive index grating
whose strength is modulated in time, leading to symmetric Stokes and anti-Stokes sideband generation.
(c),(e),(g): normalized experimental WGM transmission spectra for increasing fiber taper coupling
strength (blue line). The dashed and solid green lines respectively refer to the photon numbers of the
forward and backward travelling directions |ak|2 and |a−k|2 (arbitrary units). By increasing the cou-
pling the optical field changes from predominantly standing to predominantly travelling: |ak|2/|a−k|2
at zero detuning goes from 0.53 (c) to 11.7 (e) and 162.4 (g). (d), (f) and (h): experimental heterodyne
power spectra respectively corresponding to the cases (c), (e) and (g), illustrating the transition from
symmetric to asymmetric sideband generation.
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Fabry-Perot cavity with a movable end-mirror– typically refers to the interaction between a standing
optical field and a standing mechanical wave, as illustrated in Fig. S4(b).

We show here that these two regimes can be accessed on the same device, and that the switch can be
performed in-situ, simply by tuning the position of the coupling fiber taper in order to transition from
a standing to a travelling intracavity optical field. Indeed, our microresonator possesses some native
optical backscattering due to geometric imperfections such as sidewall roughness, which introduces a
coupling between forward and backward propagating directions. This rate is experimentally measured
to be κb = 75 MHz, on the order of the intrinsic linewidth κint = 104 MHz, and manifests as the
optical resonance taking on a characteristic doublet lineshape [28], as shown in the blue trace in Fig.
S4(c).

Based on coupled-mode theory formalism (see section S2.2 below), one can compute the relative
amount of light travelling in the forward and backward directions as a function of detuning in this
regime, as shown in the green traces. Due to the backscattering rate κb being of comparable magnitude
to the loss rate κ, both circulation directions are similarly populated, leading to a predominantly
standing optical field, as described in Fig. S4(b). Indeed, we verify that in this regime the Stokes and
anti-Stokes sidebands are comparable in magnitude, as shown in Fig. S4(d).

Next, we increase the coupling rate κext of the cavity by approaching the fiber taper. As the cavity
was previously undercoupled, this increases the depth of the transmission dip, while broadening the
width of the resonance, as shown in Fig. S4(e). In this regime, the backscattering rate κb is no longer
larger than the linewidth κ = κint+κext, and the forward propagating field is predominantly populated
(green curves), leading to a predominantly travelling optical field. This can be understood by looking
at Eqs. (6) and (7) in the following, which describe the intracavity field amplitudes. Both propagation
directions experience a loss rate κ = κint + κext which depends on κext. However, while increasing
κext increases both the loss rate and the pump rate of the forward field (see Eq. (6)), it only increases
the loss rate of the backward propagating mode, which is pumped at a fixed rate proportional to κb
(see Eq. (7)). Increasing the coupling rate to the taper therefore biases the system towards a forward
travelling optical field and a situation analogous to the Brillouin case described in Fig. S4(a). Indeed,
in this coupling regime the asymmetry between Stokes and anti-Stokes sidebands reaches 22 dB, as
shown in Fig. S4(f). Further increasing the taper coupling rate well into the overcoupled regime (Fig.
S4(g)) leads to an even higher ratio of forward to backward optical intensity (|ak|2/|a−k|2 = 162 on
resonance), and a sideband asymmetry reaching 33 dB (Fig. S4(h)).

S2.1 Hamiltonian of optical fields in the presence of backscattering

In addition to a mechanically mediated coupling (e.g. the Brillouin induced strong coupling discussed
in section S7), the coupling of two WGMs can be induced by the backscattering caused by imperfections
of the resonator geometry such as sidewall roughness [28]. Unlike the mechanically induced optical
coupling, this type of coupling is stationary, so we define a fixed mutual coupling strength κb between
the two optical modes ak and a−k (forward and backward propagating respectively). The Hamiltonian
of the system derived from coupled mode theory is:

Ĥ = ~ωka†kak + ~ω−ka†−ka−k − ~κb
(
a†ka−k + aka

†
−k

)
, (5)

where ωk and ω−k are the bare eigen-frequencies of the two optical modes, and the associated a is
the lowering operator of each mode. The subscript k is the wave number of the optical modes, with
the signs in the front indicating direction of propagation. The interaction term is a beamsplitter
interaction between the two optical modes. In the case of an ideal WGM resonator ωk = ω−k, but in
the presence of strong backscattering (i.e. κb >> κ) the bare eigen-modes of the cavity hybridize into
two distinct non-degenerate modes [28].
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Figure S5: Normalised WGM transmission spectrum in the presence of backscattering, plotted using
Eq. (10). Blue: Normalized transmission. Yellow and green dashed lines refer respectively to the
forward and backward propagating field intensities |ak|2 and |a−k|2 in arbitrary units, obtained from
Eqs (8) and (9). (a) Intrinsic optical linewidth κint: 104 MHz, taper coupling rate κext: 180 MHz,
backscattering rate κb: 75 MHz. (b) Undercoupled regime with intrinsic optical linewidth κint: 104
MHz, taper coupling rate κext: 6.4 MHz, backscattering rate κb: 75 MHz.

S2.2 Equations of motion

Including dissipation and drive, but ignoring vacuum fluctuations, the equations of motion are obtained
for the coupled optical cavity modes from the Hamiltonian of Eq.(5):

ȧk = i∆ak −
κ

2
ak + iκba−k +

√
κextain (6)

ȧ−k = i∆a−k −
κ

2
a−k + iκbak, (7)

where ∆ = ωL − ωk(−k) is the detuning, κ = κint + κext is the total optical decay rate for either
optical mode. κext is the coupling rate to the tapered optical fibre, and κint is the intrinsic optical
cavity decay rate. The pump field ain drives the forward propagating mode ak via the fiber taper.
The amplitude of the pump field ain is related to the incoming photon flux in the tapered fibre, via
|ain|2 = Pin

~ω , with Pin the input laser power. Solving the equations of motion in the steady state, the
forward propagating mode ak has the solution:

ak =

√
κext ain

−i∆ + κk/2 +
κ2
b

−i∆+κ−k/2

. (8)

The amplitude of the backscattered field a−k travelling in the opposite direction can be expressed as
a function of ak:

a−k =
i κb ak

−i∆ + κ−k/2
. (9)

Using the input-output theorem, the output light in the fibre after the cavity is aout, equal to ain −√
κext ak. Thus, the normalised transmission spectrum in the fibre after the WGM cavity is:

T =

∣∣∣∣aoutain

∣∣∣∣2
=

∣∣∣∣1− √κextakain

∣∣∣∣2
(10)

The effect of the taper coupling rate κext on the ratio of forward to backward travelling light
intensity is illustrated in Fig. S5. We consider an optical mode with an unloaded optical decay rate
κint = 104 MHz, and a backscattering coupling rate κb = 75 MHz. When the taper coupling rate is
set to κext = 180 MHz, the resulting cavity transmission is plotted in Fig. S5(a). Because the total
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dissipation rate κ = κint + κext is larger than κb, the mode splitting is not resolvable in the cavity
transmission (blue curve). For the same reason, the intracavity intensity of the forward propagating
optical field (dashed yellow line) is around 4 times larger than that of the field propagating in the
opposite direction (dashed green line). This intensity difference of the two optical modes leads to a
net forward travelling optical field in the cavity. In contrast, when the taper coupling rate is reduced
such that the total dissipation rate is now comparable to the backscattering rate, the lifted degeneracy
between forward and backward propagating fields is revealed, as shown in the blue transmission trace
in Fig. S5(b). In this regime, both optical fields are similarly populated, resulting in a predominantly
standing optical field.

S3 Orthogonality of Brillouin grating

The whispering gallery modes constitute orthogonal eigenmodes of the electromagnetic field confined
inside the optical resonator. Because of this orthogonality, the superfluid surface deformation (and
its associated refractive index modulation) caused by driving one WGM should in principle leave
other WGMs unaffected. This is indeed what we observe in the experiments. Figure S6(a) shows a
transmission spectrum of our microresonator, with the WGM used in the experiments (mopt = 186)
highlighted in red. The WGM of the same mode family with the next azimuthal order (mopt+1 = 187),
separated from the first by a free spectral range, is highlighted in green. Using the pump-probe setup
described in the main text and section S7, we use the strong pump tuned to the mopt WGM to initiate
Brillouin lasing. In this regime, the weak probe scanned over the mopt WGM reveals a doublet splitting
(Fig. S6(b)), a manifestation of the strong coupling between forward and backward propagating optical
fields mediated by the superfluid index grating. In contrast, sweeping over the adjacent mopt+1 WGM
in the same lasing regime shows this mode remains unaffected and maintains its Lorentzian shape, see
Fig. S6(c).

A schematic illustration of this orthogonality is shown in Fig. S6(d), with lower azimuthal orders
plotted here for clarity. The top panel shows the intensity profile, proportional to E2, of the mopt =
10 WGM along the circumference of the resonator (red), along with the associated superfluid film
deformation generated by the Brillouin scattering process (blue). The lower panel shows this same
surface deformation (blue) along with the field intensity of the mopt + 1 = 11 WGM. Because of the
WGM orthogonality, the refractive index modulation created by mode mopt leads to net change in
optical path length for the mopt + 1 WGM, and hence no energy shift (Eq.(11)) and a zero g0,rp and
gopt, see section S7.3.

S4 Analytical theory - non-depleted pump regime

S4.1 Hamiltonian formalism

Here we detail the analytical Brillouin scattering theory, which describes the superfluid Brillouin
system in the non-depleted pump regime, an approximation valid below the lasing threshold. The
general interaction Hamiltonian is determined by the overlap integral of the optical and acoustic
fields [29, 4]. We derive it below, based on a perturbation theory approach. The energy shift ∆E
experienced by the optical field due to the presence of the superfluid is given by:

∆E =

∫ R

r=0

∫ 2π

θ=0

∫ d0+η(r,θ)

z=0

1

2
ε0 (εsf − 1) |E|2 r dr dθ dz, (11)

where ε0 = 8.85× 10−12 F/m is the vacuum permittivity, εsf is the relative permittivity of superfluid
helium, η is the out-of-plane displacement of the superfluid surface beyond a mean height d0 due to
the acoustic wave (third sound), E is the WGM electric field and R is the radius of the disk resonator.
Given the film thickness is only a few nanometres, the electric field can be treated as constant over the
height of the film. Thus the volume integral Eq. (11) can be reduced to an integral over the surface
of the disk resonator:

∆E =

∫ R

0

∫ 2π

0

1

2
ε0 (εr − 1) (d0 + η (r, θ)) |E|2 r dr dθ (12)
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Figure S6: a) Normalized experimental cavity transmission spectrum, showing the optical mode used
in the experiments (mopt = 186) near 1555 nm (dashed red box), along with the next azimuthal order
WGM (mopt +1 = 187) separated in wavelength by an FSR (dashed green box). In the presence of the
strong refractive index grating created by pumping mode mopt above the Brillouin lasing threshold,
the pumped mode measured by the probe laser reveals strong mechanically induced optical coupling
(b), while the adjacent mopt + 1 optical mode remains unsplit (c). d) Schematic illustration of mode
orthogonality between mode mopt = 10 (red) and its associated refractive index modulation (blue)
and mode mopt + 1 = 11 (green).
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We rewrite this expression in terms of photon and phonon annihilation and creation operators:

∆E =

∫
surface

1

2
ε0 (εr − 1)

Ψb(~r)
(
bq + b†q + b−q + b†−q

)
︸ ︷︷ ︸

AC

+ d0︸︷︷︸
DC

 [|Ψa(~r)|2|ak + a−k|2
]

dA. (13)

Here Ψa(~r) = E (~r)
√

~ω∫
1
2
ε0 εr E2 dV

is the electric amplitude per photon, Ψb(~r) is the acoustic amplitude

in the ground state, ak (bq) and a−k (b−q) are respectively the photon (phonon) annihilation operators
acting on the forward and backward propagating optical (acoustic) modes. The subscripts k (q) refer
respectively to the wavenumbers of the optical (acoustic) wave and the signs in front of k and q indicate
the propagation direction, with the convention that the optical pump travels in the positive direction.
In the limit that the Brillouin frequency is much smaller than the optical frequency (ΩB � ωopt),
momentum and energy conservations require that q = 2k for the Brillouin process.

The acoustic term in Eq. (13) can be broken into two components: a DC component proportional
to the mean film thickness d0 which gives the DC shift of the optical resonance frequency due to the
superfluid helium film covering the resonator, and an AC component describing the interaction of
the surface acoustic wave with the intracavity optical field. Neglecting the DC part, the interaction
Hamiltonian takes the form:

Hint = −
∫

surface

1

2
ε0 (εr − 1) Ψb(~r)|Ψa(~r)|2 dA (bq + b†q + b−q + b†−q)|ak + a−k|2

= −~ g0,rp (bq + b†q + b−q + b†−q)(a
†
k + a†−k)(ak + a−k),

(14)

where g0,rp is the single photon optomechanical coupling rate from radiation pressure [7, 4]:

g0,rp =

∫
surface

1

2
ε0 (εsf − 1) Ψb(~r) |Ψa(~r)|2 dA (15)

The interaction Hamiltonian is further reduced by energy and momentum conservation arguments to
the following form:

Hint = −~ g0,rp(b†qaka
†
−k + b−qaka

†
−k + b†−qa

†
ka−k + bqa

†
ka−k) (16)

The first two terms correspond respectively to the Stokes and anti-Stokes scattering process for the
forward propagating optical field ak, while the third and fourth terms correspond respectively to the
Stokes and anti-Stokes process acting on the counter-propagating optical field a−k.

Note that in many other works [30, 31], the resonator’s optical spectrum is engineered such that
pump and Stokes fields are resonant with two distinct optical modes separated by the Brillouin shift.
Compared with the pump and Stokes, the non-resonant anti-Stokes field experiences a very low optical
density of states and can therefore be neglected. Here, because of the small Brillouin shift (∼ 6 MHz),
we must keep both the Stokes and anti-Stokes terms. In addition, the frequencies of the two counter-
propagating optical modes are degenerate, such that the frequencies of ak and a−k are both treated
as ∆ in the full Hamiltonian description in a frame rotating at the laser frequency ωL, where ∆ is
defined as ωL − ωk:

H = −~∆a†kak − ~∆a†−ka−k︸ ︷︷ ︸
optical

+ ~ΩBb
†
qbq + ~ΩBb

†
−qb−q︸ ︷︷ ︸

mechanical

−~g0,rp(bqa
†
ka−k + b†−qa

†
ka−k + b−qa

†
−kak + b†qa

†
−kak)︸ ︷︷ ︸

Brillouin interaction

(17)

S4.2 Fountain Pressure

Before deriving the equations of motion we must also consider the force applied to the superfluid film
via absorption-induced entropy gradients. In a similar way to radiation pressure, the fountain pressure
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is introduced as a fluctuating force, but with temporal correlations generated by the thermal response
to random photon absorption events [32, 33, 34].

Ffp(t) = ~ g0,fp
1

τt

∫ t

−∞
du e

− t−u
τt a†−k(u)ak(u) (18)

= ~ g0,fp

(
1

τt
H(t) e

− t
τt

)
∗ (a†−k(t)ak(t)) (19)

where τt is the thermal response time and g0,fp is the fountain pressure coupling rate which quantifies
the strength of the forcing. In general, the absolute value and even the sign of g0,fp depends both on
the ratio of absorbed to circulating optical power and the spatial overlap of the optical and mechanical
modes. To go from Eq.18 to Eq.19, the integral is replaced by a convolution with an exponential decay
and a Heaviside function H(t) to preserve causality.

For the fountain pressure force, two distinct regimes can be realized depending on the thermaliza-
tion rate τt. This is most easily seen by considering the force in the Fourier domain. Indeed, using
the Fourier identity F{ 1

τt
H(t)e−t/τt} = 1

1+iτtω
, we see that the a†−kak term in Eq.19 will be filtered

by a low pass filter with a corner frequency defined by the characteristic thermalization time τt. If τt
is small compared to ω, corresponding to materials with high thermal conductivity, then the low pass
filter approaches unity and the fountain pressure force will simply be Ffp(t) = ~ g0,fp a

†
−k(t)ak(t). In

this limit, the fountain pressure force is qualitatively indistinguishable from radiation pressure forces,
provided the sign of g0,fp is positive. If τt is equal to or larger than ω, corresponding to materials
with low thermal conductivity, then the low pass filter will provide both attenuation and a phase-
lag. This type of thermal response (i.e. non-Markovian) will result non-trivial back-action, hence
modifying the mechanical resonance frequency (i.e. frequency pulling) and dissipation (i.e. linewidth
narrowing/broadening).

For the system considered here we observe minimal change in the mechanical resonance frequency
when approaching the lasing threshold. This validates the assumption that τt << ΩB, which is also
consistent with the high thermal conductivity exhibited by superfluid helium. Furthermore, in the
limit of a dominant fountain pressure force, the sign of g0,fp dictates which travelling acoustic wave is
amplified by the Brillouin process. This contrasts from a purely radiation pressure based interaction,
but is not unexpected since the fountain pressure force is intrinsically energy non-conserving, enabling
the amplification of either the co-propagating or counter-propagating acoustic mode, with respect to
the pump. Here, we experimentally observe amplification of the acoustic mode that co-propagates
with the pump, indicating a positive sign on g0,fp. Henceforth, we assume the fountain pressure force

takes the form Ffp(t) = ~ g0,fp a
†
−k(t)ak(t).

S4.3 Equations of motion

From this Hamiltonian we derive the equations of motion. Including the drive ain of the pump field,
the fountain pressure coupling (g0,fp = g0,tot − g0,rp), the native backscattering κb, the thermal drive
bin (b−in) of the acoustic fields bq (b−q) respectively [31, 35] and dissipation we obtain:

ȧk = i∆ak −
κ

2
ak + ig0,rp(bqa−k + b†−qa−k) + iκba−k +

√
κext ain (20)

ȧ−k = i∆a−k −
κ

2
a−k + ig0,rp(b−qak + b†qak) + iκbak (21)

ḃq = −iΩBbq −
Γ

2
bq + ig0,tot a

†
−kak +

√
Γ bin(t) (22)

ḃ−q = −iΩBb−q −
Γ

2
b−q + ig0,tot a

†
ka−k +

√
Γ b−in(t), (23)

where κ is the optical decay rate, κext the coupling rate of the optical cavity to the tapered fibre,
nq (n−q) the thermal occupation of the co-propagating (counter-propagating) acoustic field, Γ the
intrinsic mechanical damping rate, and bin(t) the thermal drive, which obeys the Markovian noise

process such that 〈b†in(t)bin(t′)〉 = nq δ(t− t′) and 〈bin(t)b†in(t′)〉 = (nq +1)δ(t− t′) [35]. Note that light
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can drive the acoustic wave through both the radiation pressure and fountain pressure interactions,
but the acoustic wave affects light only through thickness fluctuations, namely dispersive coupling
mediated by radiation pressure.

We make the assumption that ak is a non-depleted pump, and the native backscattered light is
also not depleted. Then the equations of motion can be linearized by decomposing ak and a−k into an
average coherent amplitude αk (or α−k) given by the steady state solution, and a time-variant part
δak (or δa−k) describing the dynamics of the system. First we neglect the Brillouin interaction and
solve the steady-state of the pump and the backscattered light from Eq. (20) and Eq. (21), and obtain:

αk =
√
ncav =

∣∣∣∣∣∣
√
κext αin

−i∆ + κ/2 +
κ2
b

−i∆+κ/2

∣∣∣∣∣∣, (24)

α−k =

∣∣∣∣∣∣ iκb
−i∆ + κ/2

·
√
κext αin

−i∆ + κ/2 +
κ2
b

−i∆+κ/2

∣∣∣∣∣∣. (25)

Here we define ncav,k and ncav,−k as the intracavity photon number approximated by the steady state
solution of the pump and backscattered light respectively: ncav,k = |αk|2, ncav,−k = |α−k|2.

It is important to point out here, that the presence of weak backscattering manifests as a suppres-
sion of Brillouin amplification. This suppression arises primarily from two mechanisms: first, through
the depletion of pump photons from backscattering, and second, those backscattered photons (now
counter-propagating) actively cool the acoustic mode that is being amplified by the pump. Never-
theless, the lasing threshold behavior still remains qualitatively the same, albeit occuring at higher
injected optical powers. To concisely describe the lasing threshold behavior the following sub-sections
(Sec.S4.4 and Sec.S4.5) will neglect the effect of backscattering. However, when processing the exper-
imental data to extract the total optomechanical coupling rate the full dynamical equations will be
considered (see Sec.S5).

Subtracting the steady state solutions from Eqs.(20,21,22,23) and neglecting backscattering, optical
vacuum noises and higher order terms of the time-variant variables, the Fourier transformed equations
of motion are:

− iωδak(ω) = i∆δak(ω)− κ

2
δak(ω) + ig0,rpα−k(bq(ω) + b†−q(ω)), (26)

− iωδa−k(ω) = i∆δa−k(ω)− κ

2
δa−k(ω) + ig0,rpαk(b−q(ω) + b†q(ω)), (27)

− iωbq(ω) = −iΩBbq(ω)− Γ

2
bq(ω) + ig0,tot(α

∗
−kδak(ω) + αkδa

†
−k(ω)) +

√
Γ bin(ω), (28)

− iωb−q(ω) = −iΩBb−q(ω)− Γ

2
b−q(ω) + ig0,tot(α

∗
kδa−k(ω) + α−kδa

†
k(ω)) +

√
Γ b−in(ω). (29)

In the Fourier domain, the temporal correlation of the thermal noise becomes 1
2π

∫∞
−∞〈b

†
in(ω)bin(ω′)〉dω′ =

nq, where b†in(ω) is the Fourier transform of the complex conjugate of bin(t).

S4.4 Brillouin lasing threshold

Below the Brillouin lasing threshold of the co-propagating acoustic wave bq, the counter-propagating
acoustic wave b−q will be damped out. We therefore neglect here the counter-propagating wave b−q
in the equations of motion, a valid approximation to predict the dynamics of the forward travelling
wave bq below the lasing threshold. Neglecting the counter-progating wave, the equations of motion
are solved using the identity b†(ω) = [b(−ω)]†, and the co-propagating acoustic wave amplitude is:

bq(ω) =

√
Γ bin(ω)

−i(ω − ΩB) + Γ/2− g0,rpg0,totncav,k
−iω+i∆+κ/2

(30)
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Figure S7: Effective mechanical linewidth Γeff of the forward propagating acoustic wave versus input
laser power (blue line), plotted using Eq. (32). The orange shading corresponds to the region above
the Brillouin lasing threshold, for which the analytical theory is no longer valid (see section S5 for
above threshold analysis).

We identify the third term in the denominator of Eq.(30) as:

Σbq(ω) =
−g0,rpg0,totncav,k
−iω + i∆ + κ/2

= iδΩB(ω) +
Γopt(ω)

2
(31)

The imaginary part of Σbq(ω) leads to a shift in the Brillouin frequency δΩB (optical spring effect),
while its real part leads to a modified effective mechanical damping rate Γeff through the addition of
an optical damping term Γopt. In our system, the total optical cavity linewidth (κ/2π = 284 MHz) is
much larger than the acoustic frequency (ΩB/2π = 7.3 MHz) and the pump light is close to resonance
((∆−ω)� κ). As a result, Σbq ' Re

{
Σbq

}
primarily contributes to changing the effective mechanical

linewidth through Γopt ' −
4g0,rpg0,tot(ncav,k−ncav,−k)

κeff
. The effective mechanical linewidth Γeff of the

co-propagating acoustic wave can thus be expressed as:

Γeff = Γ− 4g0,rpg0,tot

κ
ζncav,k (32)

where the new unitless term, ζ, is added to account for the suppression of linewidth narrowing from
backscattered photons. The value of this term is determined via numerical techniques in Sec.S5.

Figure S7 plots Γeff as a function of input laser power, with the following parameters: acoustic
resonance frequency ΩB/2π = 7.3 MHz, laser (pump) frequency wL/2π = 193 THz, fiber-to-cavity
coupling rate κext = 180 MHz, optical decay rate κ/2π = 284 MHz, the radiation pressure optome-
chanical coupling rate g0,rp is estimated to be 11 kHz in Section S1.5 of this supplementary material,
optical detuning ∆ = ΩB, intrinsic mechanical linewidth Γ = 85 kHz, total optomechanical coupling
g0,tot = 133 kHz and ζ = 0.22. The effective linewidth approaches zero at 1.8 µW input power, which
corresponds to the Brillouin lasing threshold.

Note as mentioned earlier that this analytical result is only valid in the non-depleted pump regime,
and only describes the behaviour below the threshold. The above threshold behaviour is explained
by numerically solving the full equations of motion without the non-depleted pump approximation,
which accounts for the saturation of the Stokes amplitude (see section S5 for more details).

S4.5 Backreflected light power spectrum

We solve here for the backscattered light power spectrum, used for the solid fit in Fig. 2 of the main
text. Following the same approach used to determine bq, we obtain the backreflected light spectral
amplitude δa−k(ω):

δa−k(ω) =
ig0,rpαk b

†
q(ω)

−iω − i∆ + κ/2
(33)
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Figure S8: Analytical calculation of the reflected light power spectrum in the non-depleted pump
regime, showing the lasing of the Stokes sideband. Curves corrspond to Pin = 0.5µW (blue); Pin =
1µW (yellow) and Pin = 1.8µW (red - at phonon lasing threshold).

The power spectrum of the reflected light then takes the following form using the Wiener-Khinchin
theorem:

Sδa−kδa−k(ω) =
1

2π

∫ ∞
−∞

dω′
〈
[δa−k(−ω)]†δa−k(ω

′)
〉

=
1

2π

∫ ∞
−∞

dω′
〈 −ig0,rpα

∗
k bq(ω)

−iω + i∆ + κ/2
· ig0,rpαk b

†
q(ω′)

−iω′ − i∆ + κ/2

〉 (34)

After substituting the solution of bq given by Eq.(30) into Eq.(33), the explicit solution of δa−k(ω) is:

δa−k(ω) =
ig0,rpαk

−iω − i∆ + κ/2
·

( √
Γb†in(ω)

−iω − iΩB + Γ/2− g0,rpg0,totncav,k
−iω−i∆+κ/2

)
, (35)

where we recognize both an optical cavity and acoustic response components. Defining the cavity
susceptibility as χ−k(ω) and the Brillouin-interaction modified acoustic susceptibility as χq(ω), with:

χ−1
−k(ω) = −iω − i∆ + κ/2

χ−1
q (ω) = −i(ω − ΩB) + Γ/2−

g0,rpg0,totncav,k
−iω + i∆ + κ/2

,
(36)

we rewrite the expression of δa−k under the more convenient form:
δa−k(ω) = ig0,rpαk χ−k(ω)[

√
Γb†in(ω)χ∗q(−ω)]. The reflected light power spectrum is then reduced to:

Sδa−kδa−k(ω) = g2
0,rpncav,kΓ|χ−k(ω)|2

[∣∣χ∗q(−ω)
∣∣2 · (nq + 1)

]
(37)

When the pump power is increased, the co-propagating acoustic wave is increasingly amplified. The
Stokes sideband generated by the co-propagating wave is plotted in Fig. S8, using the experimental
parameters specified above. The power spectra show how the pump field drives the co-propagating
acoustic wave, eventually resulting in lasing around 1.8 µW.

S4.6 Bulk heating from the pump beam

As discussed in the main text, the fountain pressure contribution to the optical forcing arises from su-
perfluid flow induced from optical heating. Given this, one might expect the thermal bath experienced
by the acoustic wave to strongly depend on input power. However, the strength of these two effects
(i.e. bulk heating and increased forcing) can vary independently, according to material properties and
the overlap of the ‘hot-spot’ to the mechanical mode profile [36, 37]. Indeed, it has been shown that
such thermal effects do not necessarily preclude ground state cooling [38].
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Figure S9: Experimentally observed increase of the thermal bath occupation due to optical absorption
in silica. The vertical axis is normalized, and represents the right hand side of Eq. 39. The ratio of
the slope to the intercept gives A/nq.

In the absence of bulk heating, the bath occupancy is related to the Stokes power spectrum and
the effective acoustic linewidth. This can be seen by neglecting quantum noise terms and rearranging
Eq. 37 with ω = ΩB,

nq ∝
Γ2

effSδa−kδa−k(ΩB)

ncav,k
(38)

This equation shows that, for all pump powers, the RHS of Eq. 38 is constant and related to the bath
occupation through a proportionality constant. However, in presence of optical absorption in the silica
disk the thermal bath occupancy experienced by the acoustic mode will increase with pump power.
Including this passive heating, Eq. 38 becomes:

nq +Ancav,k ∝
Γ2

effSδa−kδa−k(ΩB)

ncav,k
, (39)

where ncav,k is the intracavity photon number, and A quantifies the conversion from optical photons
to acoustic phonons. The product of experimentally measured parameters given on the RHS of Eq. 39
is plotted in Fig. S9. Conveniently, the ratio of the slope to the intercept of the fit is equal to A/nq,
regardless of the measurement efficiency and measurement gains. At the fridge’s base temperature
(∼ 20 mK), with zero input power, the thermal bath occupancy is nq ∼ 40. Therefore, from the fitting
in Fig. S9, the conversion from optical photons to acoustic phonons is estimated to be ∼ 0.02%. For
example, just below lasing threshold, at 1.7 µW we have ∼ 2 × 104 intracavity photons, which will
contribute ≈ 400 phonons to the thermal bath.

S5 Full numerical solving of Brillouin equations of motion

Fig. 3 in the main text shows Brillouin lasing as manifested in (a) the fast rise, and subsequent
saturation (above 1.8µW ), of the Stokes sideband amplitude with increasing input power, and (b)
the power spectral density of the back-reflected light for 5.1µW input power. We illustrate these
observations further here by showcasing the time dynamics associated with the spectrum in Fig. 3(b)
of the main text. The spectrum and the time-dynamics presented in this section are obtained through
numerical integration of the dynamical differential equations of motion (Eqs. 20-23). The analytical
expression for the effective linewidth of the Stokes sideband Γeff (Eq. (32), or Eq. (1) in the main text)
is valid only in the undepleted pump regime. While this provides an estimate of the power at which
the effective mechanical damping Γeff → 0 (the lasing threshold), it breaks down for input powers
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Parameter Symbol Value Units

Acoustic damping rate Γ/2π 85 kHz
Acoustic (Brillouin) frequency ΩB/2π 6.3 MHz
Laser detuning ∆ 0 MHz
Overall cavity intensity decay rate κ/2π 284 MHz
Input coupling (external) cavity decay rate κext/2π 180 MHz
Backscattering decay rate κb/2π 75 MHz
Single photon coupling strength (radiation pressure) g0,rp/2π 11 kHz
Single photon coupling strength (fountain pressure) g0,fp/2π 122 kHz

Table S2: System parameters used in numerical simulation.

exceeding the threshold. Numerical analysis is therefore needed to provide quantitative information
in the above-threshold regime. The following system is numerically integrated:

ȧk = i∆ak −
κ

2
ak + ig0,rp(bq + b†−q)a−k + iκba−k +

√
κextain (40)

ȧ−k = i∆a−k −
κ

2
a−k + ig0,rp(b−q + b†q)ak + iκbak (41)

ḃq = −iΩBbq −
Γ

2
bq + ig0,tota

†
−kak (42)

ḃ−q = −iΩBb−q −
Γ

2
b−q + ig0,tota

†
ka−k (43)

The simulation parameters and their numerical values are summarized in table S2. With respect to
the system Eqs. 20-23, the thermal noise terms

√
Γ b−in(t) and

√
Γ bin(t) are omitted. While the

presence of thermal noise is required in order to seed the lasing process, it can be replaced by non-zero
starting conditions. The initialization for the presented simulation was ak = a−k = bq = 0, and
b−q = 400. Some initial population (here |b−q|2 = 16× 104 phonons) in the direction opposite to the
pump photons ak then seeds the Brillouin scattering process. Indeed, the presence of thermal noise
and the initialization of the system only has an impact on the very start of the simulation, not on the
steady-state lasing dynamics which we are interested in here. It is worth noting here that although
the population of pump photons is initialized with |ak|2 = 0, it rapidly3 jumps to a finite population

set by the coherent laser input field ain =
√

Pin
~ωL .

Figure S10 shows the evolution over time of the circulating light intensity and acoustic displacement
amplitude, in the forward (a and c) and backward (b and d) directions. First, the forward propagating
light field is dominant (|ak|2 > |a−k|2), and the forward propagating acoustic wave is amplified (shaded
region in Fig. S10 c, Stokes process) by reflection of the forward travelling photons. Once this forward-
travelling refractive index grating has reached a significant amplitude (t =∼ 0.005 s), this leads to a
depletion of the pump field ak, and a saturation of the growth of the lasing forward Brillouin wave bq.
This is the mechanism behind the saturation visible in Fig. 3 (a) of the main text. After some period
of transient dynamics (t =∼ 0.02 s), the backward propagating acoustic wave (Fig. S10 d) settles into
a low amplitude steady-state. The lasing process can also be observed in the frequency domain. The
power spectrum of the Brillouin-scattered light â−k in Fig. S11 (Fig. 3 (b) in main text) is obtained
by taking the Fast Fourier transform over the last 4 ms of the time evolution once the system has
reached its steady-state. A local oscillator beam âLO sinusoidally modulated at 80 MHz is added to
the signal â−k to explicitly mimic the experiment. Aside from the Stokes and anti-Stokes sidebands
immediately on either side of the LO, a comb-like pattern is observed, with features integer multiples
of the Brillouin frequency ΩB away from the LO. We ascribe these to non-linear sideband mixing
and higher-order Stokes scattering. The non-linear mixing is mediated by optical back-scattering,
whereby back-scattered pump photons will interfere with Stokes photons and modulate the intensity
of the travelling wave grating. This will appear in the power spectrum as harmonics of the original

3On a time scale ∼ 1/κ ∼ ns
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Figure S10: Brillouin scattering at 5.1µW input power: transient evolution towards steady-state lasing.
The field amplitude is a, while |a|2 corresponds to the intracavity photon number. b̂q+ b̂†q and b̂−q+ b̂†−q
are the displacement amplitudes in units of the zero point fluctuation amplitude xZPF =

√
~/2mΩB [7].

(a) Incoming photons of amplitude âk are converted to (b) backscattered photons of amplitude â−k and

(c) forward propagating Brillouin phonons with displacement amplitude b̂q + b̂†q. (d) Backpropagating

acoustic wave with displacement amplitude b̂−q + b̂†−q. Inset: close-up of the Brillouin displacement

amplitude in the lasing regime, in a time frame covering two mechanical periods (2× 1
6.3 MHz). Plots

(a), (b), (c) & (d) show the transient dynamics of a longer t = 5 ms simulation with 2×107 time steps,
used to compute the power spectrum shown in Fig. S11.
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Figure S11: Brillouin lasing observed in the spectrum of light reflected from the cavity at high optical
powers. Top: experimental data. Bottom: |â−k + âLO|2[ω] obtained via numerical integration of
differential equations (no free parameters). Frequencies displayed are shifted by a local oscillator
beam modulated at 80 MHz. The height of the LO peak is larger in the experiment due to elastic
optical backscattering coming e.g. from splices, fiber connections and the fiber taper support pads.
These are not taken into account in the simulations, which only account for elastic backscattering due
to geometrical imperfections in the resonator (κb term).
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Stokes line. Comparing the spectral traces in Fig. S11, we observe very good agreement between the
experimental observations and theoretical predictions through numerical simulation.

S6 Estimation of electrostrictive g0,es of the silica disk

We compare here the magnitude of the radiation pressure coupling between light and thickness fluc-
tuations in the superfluid film g0,rp, to the electrostrictive coupling rate between light confined in
the silica resonator and an acoustic wave propagating in the silica itself, g0,es SiO2. In order to get a
rough estimate of g0,es SiO2, we consider the silica as an isotropic material whose refractive index only
depends on its density. Under this simplifying assumption, the electrostrictive single photon coupling
strength g0,es SiO2 is given by:

g0,es SiO2 =
ω

2

∫
γe ε̃v (~r)Ep (~r) Es (~r) d3~r√∫
εEp (~r) d3~r

√∫
εEs (~r) d3~r

, (44)

where Ep and Es respectively refer to the pump and Stokes fields, ε̃v =
δVzp
V = − δρzp

ρ is the zero-point

volumetric strain caused by the Brillouin wave in the silica, and γe =
(
ρ ∂ε
∂ρ

)
ρ=ρ0

= (ε− 1) (ε+ 2) /3

is the electrostrictive constant of the material [39]. (Thus γe ε̃v corresponds to the zero-point permit-
tivity fluctuations of the material due to the Brillouin wave). For backward scattering with identical
azimuthal order pump and Stokes waves as is the case in our experiment, Eq.(44) becomes:

g0,es SiO2 =
ω

2

∫
γe ε̃v (~r)E2 (~r) d3~r∫

εE2 (~r) d3~r
, (45)

We estimate g0,es SiO2 through the finite element simulations shown in Fig. S12. Figure S12 (a) and
(b) show the optical field distribution of the WGM used in the experiments, while (c) and (d) show the
displacement and strain caused by an acoustic wave localized to the silica wedge with m = 2×mopt.
Estimation of the single photon electrostrictive coupling rate through Eq. 45 yields g0,es SiO2 =∼ 17
kHz. The radiation pressure contribution due to the moving boundary effect [40] is much smaller,
with g0,rp SiO2 =∼ 3 Hz. The electrostrictive g0,es SiO2 for the silica disk is comparable to the radiation
pressure g0,rp due to the moving boundary effect of the superfluid film. The reason we do not observe
Brillouin lasing from the silica disk is –beyond the approximatively three orders of magnitude higher
acoustic damping rate for the GHz phonons in silica [3] compared to the superfluid sound wave–
that it not possible to get 3-fold resonant enhancement (pump+Stokes+acoustic wave) in the silica.
Indeed, the Stokes beam would be strongly suppressed in our microresonator as there is a very low
density of states for it 10 GHz away from the pump. Typically, the way to get efficient backward
Brillouin scattering in a WGM microresonator is for the device’s free spectral range (FSR) to match
the Brillouin shift (∼10 GHz). This requires a large device size, on the order of 6 mm diameter for
silica [41, 42, 3].

Miniaturization would enable large increases in the Brillouin interaction due the efficient co-
localization of light and sound, but so far those efforts have been hampered by the fact that the
usual energy and momentum matching criteria4 generally cannot be met in miniaturized devices with
sparse optical spectra. However, because of the low speed of superfluid third-sound in our devices, this
triple resonant enhancement is automatically satisfied independantly of device size. This approach
can be scaled all the way down to devices with λ3 mode volumes [43], enabling radiation-pressure
g0,rp/2π in excess of 105 Hz with triply resonant interactions to be achieved.
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Figure S12: Estimation of the electrostrictive g0,es of the silica disk resonator. (a) Top-view of the
electric field distribution for the (p = 1; m = 186) TE WGM of the resonator. (b) side-view of the
electric field intensity distribution |E|2. (c) Finite element element model of a propagating acoustic
wave localized in the disk wedge, with azimuthal order m = 372 and frequency ΩB = 6 GHz. (d)
Cross-section of the silica resonator displaying the zero-point surface deflection (line plot), as well as
the zero-point volumetric strain (surface plot) due to the Brillouin wave, with their respective scale
bars: the zero-point volumetric strain (and relative permittivity) fluctuations are on the order of 10−10

while the zero-point surface deflection is on the order of 10−16 m.

(a) (b)

Figure S13: Pump-probe measurement of the cavity optical response, for a travelling wave grating (a),
and a stationary oscillating grating (b). While the superfluid film deformation is essentially out-of
plane, its localized effect on the effective refractive index is represented here as a localized perturbation
to the cavity radius. (a) The initially degenerate CCW and CW WGM resonances are split by the
strong Brillouin-induced refractive index grating. The mode splitting can be described in the basis of
quasi-stationary modes (red and blue WGMs) rotating at the speed of sound.
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S7 Optical strong coupling

S7.1 Experimental measurement of strong optical coupling

The optical spectrum of the cavity is measured with the following pump-probe setup, as illustrated
in Figure 1 of the main text. A powerful (∼ 5µW) pump laser (NKT Koheras Adjustik fiber-laser)
is brought onto resonance with the initially unsplit cavity WGM resonance. As the pump power is
above threshold, this initiates spontaneous Brillouin lasing, as verified through the transmitted light
power spectrum. This creates a travelling refractive index grating, as shown in Figure S13(a). This
grating travels counterclockwise at the speed of sound, with a frequency ΩB/2π ' 2 c3/λlight. While
the lasing is maintained, a low-power tunable diode laser (Yenista T100S-HP) is repeatedly swept
across the optical resonance (100 Hz), using the laser’s piezo-wavelength control. The transmitted
optical photodetector signal is low-pass filtered (filter bandwidth = 20 kHz) and averaged (256 times)
in order obtain the optical cavity spectrum, free from any modulation due to the Brillouin lasing
process.

Due to the large refractive index grating generated by the Brillouin lasing process, the probe laser
now detects two distinct cavity resonances: a lower frequency resonance (red), where the light intensity
is maximal under the peaks of the superfluid wave, and a higher frequency resonance (blue) —spatially
shifted by λB/2— corresponding to maximal light intensity under the wave troughs, see Figure S13(a).
The magnitude of the measured splitting is a direct measure of the coupling rate gopt between pump
and Stokes fields, and for gopt > κ, strong mechanically mediated optical coupling between CCW and
CW optical resonances is achieved.

Note that because the cavity decay rate κ is much larger than the Brillouin frequency ΩB in
this scheme, all intracavity photons sense an essentially static refractive index grating, as the grating
motion is negligible over the ∼ 1/κ photon lifetime. Moreover, as the refractive index modulation is
simply rotating around the device, the resonance frequencies of red and blue WGMs are essentially
constant in time. As such, even though the probe laser sweep-rate is lower than the travelling grating
frequency, the photodetector signal can be integrated without loss of information.

In contrast, for an ‘optomechanics-like’ oscillating stationary refractive index grating (see Figure
S13(b)), the magnitude of the measured splitting would now be oscillating in time at frequency 2ΩB. A
time-averaged measurement would therefore reveal a broadened optical resonance, with no discernible
splitting (see Fig. S13(b) and e.g. Ref. [44]).

S7.2 Theory

Here we calculate the modified eigenfrequencies of a pair of optical cavity modes introduced by me-
chanically mediated scattering between them.

Ĥ = ~ωka†kak + ~ω−ka†ka−k − ~g0,rp

(
a†ka−kbq + aka

†
−kb
†
q

)
, (46)

where ωk and ω−k are the bare eigen frequencies of the two optical modes, and the associated a is
the lowering operator of each mode. g0,rp is the usual vacuum optomechanical coupling rate, and bq
is the lowering operator for the co-propagating acoustic wave, where the counter-propagating wave is
neglected. k and q are respectively the wave numbers of the optical modes and acoustic wave, with
the signs in the front indicating directions. The bare mechanical Hamiltonian has been neglected here,
because we will instead just assume that the mechanical oscillator oscillates at some frequency and at
some amplitude (the exact frequency will turn out not to matter, but should be expected to be very
close to the bare mechanical resonance frequency).

This Hamiltonian models the Brillouin interaction of particular interest to this experiment, but
also a broader class of ”photon-phonon translator” type systems such as introduced by the Painter
group [45].

4Energy and momentum matching conditions in WGM resonators are given by ωpump = ωStokes + ΩB and mB =
mpump ±mStokes, where + and - respectively correspond to the backward and forward scattering processes.
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S7.3 Equations of motion

From the Hamiltonian we directly obtain the equations of motion for the coupled optical cavity
modes in the absence of dissipation. While dissipation can have the effect of shifting the eigen mode
frequencies, for high quality optical cavities, as is the relevant case for this experiment, this is a
negligible effect. Neglecting the dissipation allows a simpler calculation.

The equations of motion are found to be:

ȧk = −iωkak + ig0,rpa−kbq (47)

ȧ−k = −iω−ka−k + ig0,rpakb
†
q (48)

Then we treat the mechanical oscillator classically (we’re interested in the light scattered due to
its coherent oscillation rather than fluctuations) by substituting bq with βqe

−iΩBt. βq is the amplitude
of oscillation and ΩB can be thought of as the mechanical resonance frequency though in fact our
results do not require this (of course, the further away from resonance the harder it will typically be
to drive the oscillator to a given amplitude). We take βq to be real, without loss of generality. This
just determines the phase of the mechanical oscillation. Defining the mechanical-amplitude boosted
optomechanical coupling rate gopt = βq g0,rp, we then obtain

ȧk = −iωkak + igopte
−iΩBta−k (49)

ȧ−k = −iω−ka−k + igopte
iΩBtak. (50)

The terms on the right are coherent coupling terms that act to hybridise the two optical modes. This
results in a new pair of orthogonal eigenmodes with shifted frequencies.

To determine the shifted eigenmode frequencies we postulate solutions of the following form:

ak → αke
−iωt (51)

a−k → α−ke
−iωt (52)

where ω is the oscillation frequency. Again we are neglecting the fluctuations in the fields, which do
not alter the eigenfrequencies, with the α’s representing the coherent amplitude of each field. We then
find

−iωak = −iωkαk + igopte
−iΩBtα−k (53)

−iωa−k = −iω−kα−k + igopte
iΩBtαk. (54)

In matrix representation this can be written as

M ·α = 0, (55)

where

M =

[
ωk − ω −gopte

−iΩBt

−gopte
iΩBt ω−k − ω

]
and

α =

[
αk
α−k

]
Non-trivial (α 6= 0) solutions to this matrix equation only exist when M is invertible and has a
determinant equal to zero. This gives a condition on the frequency ω:

|M| = (ωk − ω) (ω−k − ω)− g2
opt = 0, (56)

which does not depend explicitly on the oscillation frequency ΩB of the mechanical element. Note,
there is an implicit dependence, since achieving a large βq and therefore gopt is easier for oscillation
frequencies near the mechanical resonance frequency. Similarly, choosing appropriate bare optical
frequencies can greatly enhance the ability of radiation pressure to drive the mechanical response.
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Solving this equation for ω gives two new shifted eigen frequencies ω± given by

ω± = ω̄ ±
√

∆2/4 + g2, (57)

where ω̄ = (ωk + ω−k)/2 is the average of the two bare resonance frequencies and ∆ = ωk − ω−k is
their difference.

We can observe that when gopt � ∆ the splitting between the resonances is given by δ = ω+−ω− =
2gopt as expected for strong coupling. However, in the reverse regime where g � ∆, δ = ∆ + 2g2

opt/∆.
In this case, the first term (∆) is just the initial splitting of the resonances. The shift in splitting due
to the mechanically-mediated coupling is 2g2

opt/∆, suppressed compared to the regime where gopt � ∆
by a factor of ∆/gopt. In this superfluid Brillouin lasing experiment, the initial splitting of the two
optical modes is zero, so the strong optical coupling is observed. In contrast, when the initial splitting
of the two optical modes is engineered to be the Brillouin shift (typically ∼ 10 GHz) in solid Brillouin
experiments, it is not possible to obtain strong coupling of the two optical modes.

S7.4 Superfluid wave amplitude in the strong optical coupling regime

As stated earlier, the superfluid acoustic wave-mediated optical coupling strength takes the form:

gopt = βg0,rp. (58)

Above the Brillouin lasing threshold, with 5.1 µW pump power, the optical splitting in Fig. 3(b) of the
main-text gives a mechanically mediated optical coupling rate of gopt/2π = 187.4 MHz. Combined with
a single photon optomechanical coupling rate g0,rp/2π = 11 kHz, obtained from fitting the experimental
effective acoustic linewidth, this corresponds to a zero-point-motion normalised mechanical amplitude
β of 1.9 × 104 (Eq. (58)). This value is of comparable magnitude to that obtained by numerically
solving the equations of motion above the lasing threshold (see section S5). Indeed, as shown in Fig.
9(c), in those simulations the acoustic amplitude in the steady-state, with a slightly higher 5.1 µW
pump power, is ∼ 4× 104 xzpf . With a zero-point-motion amplitude xzpf = 9.5× 10−15 m (see Table
S1) , these experimental and simulated amplitudes respectively correspond to a deformation of the
superfluid interface of 1.8 Å and 3.8 Å.
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I. Favero, “Light-Mediated Cascaded Locking of Multiple Nano-Optomechanical Oscillators,” Physical Review Let-
ters, vol. 118, p. 063605, Feb. 2017.

[7] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys., vol. 86, pp. 1391–
1452, Dec 2014.

[8] K. R. Atkins, “Third and Fourth Sound in Liquid Helium II,” Physical Review, vol. 113, pp. 962–965, Feb. 1959.

[9] L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High Frequency GaAs Nano-
Optomechanical Disk Resonator,” Physical Review Letters, vol. 105, Dec. 2010.

[10] S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation
theory for Maxwells equations with shifting material boundaries,” Physical Review E, vol. 65, June 2002.

[11] M. A. Woolf, P. M. Platzman, and M. G. Cohen, “Brillouin Scattering in Liquid Helium II,” Physical Review Letters,
vol. 17, pp. 294–297, Aug. 1966.

24



[12] G. Winterling, G. Walda, and W. Heinicke, “Stimulated brillouin scattering in liquid helium,” Physics Letters A,
vol. 26, pp. 301–302, Feb. 1968.

[13] L. A. D. Lorenzo and K. C. Schwab, “Superfluid optomechanics: coupling of a superfluid to a superconducting
condensate,” New Journal of Physics, vol. 16, p. 113020, Nov. 2014.

[14] A. Kashkanova, A. Shkarin, C. Brown, N. Flowers-Jacobs, L. Childress, S. Hoch, L. Hohmann, K. Ott, J. Reichel,
and J. Harris, “Superfluid brillouin optomechanics,” Nature Physics, vol. 13, no. 1, p. 74, 2017.

[15] Y. P. Sachkou, C. G. Baker, G. I. Harris, O. R. Stockdale, S. Forstner, M. T. Reeves, X. He, D. L. McAuslan, A. S.
Bradley, M. J. Davis, and W. P. Bowen, “Coherent vortex dynamics in a strongly-interacting superfluid on a silicon
chip,” arXiv:1902.04409 [cond-mat, physics:quant-ph], Feb. 2019. arXiv: 1902.04409.

[16] R. J. Donnelly and C. F. Barenghi, “The Observed Properties of Liquid Helium at the Saturated Vapor Pressure,”
Journal of Physical and Chemical Reference Data, vol. 27, pp. 1217–1274, Nov. 1998.

[17] D. R. Tilley and J. Tilley, Superfluidity and Superconductivity. CRC Press, Jan. 1990.

[18] F. Souris, X. Rojas, P. Kim, and J. Davis, “Ultralow-Dissipation Superfluid Micromechanical Resonator,” Physical
Review Applied, vol. 7, p. 044008, Apr. 2017.

[19] L. A. De Lorenzo and K. C. Schwab, “Ultra-High Q Acoustic Resonance in Superfluid $$ˆ4$$4he,” Journal of Low
Temperature Physics, vol. 186, pp. 233–240, Feb. 2017.

[20] K. Penanen and R. E. Packard, “A Model for Third Sound Attenuation in Thick 4he Films,” Journal of low
temperature physics, vol. 128, no. 1-2, pp. 25–35, 2002.

[21] J. A. Hoffmann, K. Penanen, J. C. Davis, and R. E. Packard, “Measurements of attenuation of third sound:
Evidence of trapped vorticity in thick films of superfluid 4he,” Journal of low temperature physics, vol. 135, no. 3-4,
pp. 177–202, 2004.

[22] R. J. Donnelly, Quantized vortices in helium II, vol. 2. Cambridge University Press, 1991.

[23] E. R. Generazio and R. W. Reed, “The scattering of ultrasonic third sound from substrate surface defects,” Journal
of low temperature physics, vol. 56, no. 3-4, pp. 355–377, 1984.

[24] C. Bekker, R. Kalra, C. Baker, and W. P. Bowen, “Injection locking of an electro-optomechanical device,” Optica,
vol. 4, pp. 1196–1204, Oct. 2017.

[25] D. T. Nguyen, C. Baker, W. Hease, S. Sejil, P. Senellart, A. Lematre, S. Ducci, G. Leo, and I. Favero, “Ultrahigh
Q-frequency product for optomechanical disk resonators with a mechanical shield,” Applied Physics Letters, vol. 103,
p. 241112, Dec. 2013.

[26] C. A. Condat and T. R. Kirkpatrick, “Third-sound propagation on a periodic substrate,” Physical Review B, vol. 32,
no. 7, p. 4392, 1985.

[27] R. Van Laer, R. Baets, and D. Van Thourhout, “Unifying Brillouin scattering and cavity optomechanics,” Physical
Review A, vol. 93, no. 5, pp. 1–15, 2016.

[28] M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks:
theory and experiment,” Optics Express, vol. 13, p. 1515, mar 2005.

[29] M. Tomes, F. Marquardt, G. Bahl, and T. Carmon, “Quantum-mechanical theory of optomechanical Brillouin
cooling,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 84, no. 6, 2011.

[30] G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nature Physics,
vol. 8, pp. 203–207, mar 2012.

[31] P. Kharel, G. I. Harris, E. A. Kittlaus, W. H. Renninger, N. T. Otterstrom, J. G. E. Harris, and P. T. Rakich,
“High-frequency cavity optomechanics using bulk acoustic phonons,” aug 2018.

[32] J. Restrepo, J. Gabelli, C. Ciuti, and I. Favero, “Classical and quantum theory of photothermal cavity cooling
of a mechanical oscillator,” Comptes Rendus Physique, vol. 12, no. 9, pp. 860 – 870, 2011. Nano- and micro-
optomechanical systems.

[33] M. Pinard and A. Dantan, “Quantum limits of photothermal and radiation pressure cooling of a movable mirror,”
New Journal of Physics, vol. 10, p. 095012, sep 2008.

[34] C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, “Optical self cooling of a deformable fabry-perot cavity in the
classical limit,” Phys. Rev. B, vol. 78, p. 035309, Jul 2008.

[35] W. P. Bowen and G. J. Milburn, Quantum optomechanics. CRC Press, 2015.

[36] C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature, vol. 432, no. 7020, pp. 1002–1005, 2004.

[37] G. Jourdan, F. Comin, and J. Chevrier, “Mechanical mode dependence of bolometric backaction in an atomic force
microscopy microlever,” Physical Review Letters, vol. 101, no. 13, 2008.

[38] J. Restrepo, J. Gabelli, C. Ciuti, and I. Favero, “Classical and quantum theory of photothermal cavity cooling
of a mechanical oscillator,” Comptes Rendus Physique, vol. 12, no. 9, pp. 860 – 870, 2011. Nano- and micro-
optomechanical systems.

[39] R. W. Boyd, Nonlinear optics. Elsevier, 2003.

25



[40] C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium
arsenide optomechanical disk resonators,” Optics Express, vol. 22, pp. 14072–14086, June 2014.

[41] J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nature Communica-
tions, vol. 4, p. 2097, dec 2013.

[42] J. Li, M.-G. Suh, and K. Vahala, “Microresonator brillouin gyroscope,” Optica, vol. 4, pp. 346–348, Mar 2017.

[43] E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lematre, S. Ducci, G. Leo, and I. Favero, “High-
frequency nano-optomechanical disk resonators in liquids,” Nature Nanotechnology, vol. 10, pp. 810–816, Sept.
2015.

[44] M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and
O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Optics Express, vol. 19, pp. 24905–
24921, Dec. 2011.

[45] A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phononphoton translator,”
New Journal of Physics, vol. 13, p. 013017, jan 2011.

26


	SpringerNature_NatPhy_785_ESM.pdf
	Experimental details
	Device Fabrication
	Experimental setup
	Characterization of superfluid film thickness
	Optomechanical coupling G
	Radiation-pressure contribution
	Photoelastic contribution

	Estimation of single photon optomechanical coupling rate g0,rp
	Influence of surface tension
	Acoustic dissipation

	Standing-wave versus travelling-wave Brillouin interaction
	Hamiltonian of optical fields in the presence of backscattering
	Equations of motion

	Orthogonality of Brillouin grating
	Analytical theory - non-depleted pump regime
	Hamiltonian formalism
	Fountain Pressure
	Equations of motion
	Brillouin lasing threshold
	Backreflected light power spectrum
	Bulk heating from the pump beam

	Full numerical solving of Brillouin equations of motion
	Estimation of electrostrictive g0,es of the silica disk
	Optical strong coupling
	Experimental measurement of strong optical coupling
	Theory
	Equations of motion
	Superfluid wave amplitude in the strong optical coupling regime





