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1 Supplementary files and scripts

Thermal equivalent circuit analysis script. This Mathematica notebook contains the data and

code used to generate Fig. 2 of the main text, as well as Figs.S8, S9 and S10, using the thermal

equivalent circuit analysis.

Additional simulation files and scripts are accessible from the Zenodo data repository at

https://doi.org/10.5281/zenodo.6982289.

• This repository contains the Mathematica notebook containing the data and code used to

generate Fig. 2 of the main text, as well as Figs.S8, S9 and S10. It can be found under:

‘\Zenodo repository\Thermal Circuit notebook\ThermalCalculationsMicroSphere V12 AS.nb’

• This repository also contains the thermal, acoustic and optical COMSOL multiphysics

simulation files used to generate Fig. 3b of the main text, as well as Figures S2, S3 and

S6. These can be found under: ‘\Zenodo repository\Comsol simulations’

2 Experimental details

2.1 Experimental setup

The microsphere resonator is located in a superfluid-tight sample chamber at the bottom of a

Bluefors dilution refrigerator (base temperature 10 mK) (29). Telecom laser light (λ = 1554

nm) from a low-noise erbium-doped fiber laser (Koheras ADJUSTIK) is evanescently cou-

pled into the microsphere via a tapered optical fiber (27). Precise fiber positioning is achieved

through Attocube nanopositioning stages. The measurements are performed with the pulse-

tube cooler (PTC) turned off in order to minimize vibrations. When the PTC is switched off,

substitute cooling power is provided by a liquid helium ‘battery’, containing approximately 1L

of liquefied 4He, located on the 4K stage, providing about 2-3 hours of measurement with the

https://doi.org/10.5281/zenodo.6982289


pulse tube off. The sample chamber contains a small volume of alumina nanoparticles in order

to increase the effective chamber surface area (∼10 m2), leading to more precise film thickness

control and greater film thickness stability (38). While at base temperature, 4He gas can be

injected from the top of the cryostat into the sample chamber through a thin capillary, allowing

for in situ control of the superfluid film thickness.

The microsphere resonator is obtained by melting the end of a silica single mode fiber (SMF-

28) in a fusion splicer. The non-reflown end of the fiber is then held in place on a sample holder

inside the cryostat by a large drop of UV glue. A scanning electron microscope image of three

such resonators, of differing stem length l, is shown in Fig. S1. We employ Norland Optical

Adhesive NOA 68 UV-curing glue for this purpose. This glue is chosen for its rapid curing time

and relatively high viscosity (5000 cps). This allows for the glue to be cured before any wicking

of the glue up the stem and onto the sphere itself which degrades its optical properties. This

gluing procedure is robust to thermal cycling down to mK temperatures and the ensuing thermal

stresses, likely due to large amount of glue used and the rough machined-aluminum sample

holder surface providing an ample contact area for adhesion. In another context (fixing silica

angle-polished fiber to smooth silicon, silica or HSQ-cladded wafers), the cryogenic survival of

NOA 68 bonds was inferior, with a >90% failure rate after 5 thermal cycles. In that context, the

use of an UV-curing glue containing a latent heat catalyst (NOA 86H from Norland Products)

was found to provide superior performance. More details can be found reference (61).

2.2 Superfluid film thickness

The mean superfluid film thickness d0 covering the microsphere resonator can be estimated

by tracking the optical resonance frequency shift ∆ω0 that a whispering gallery mode (WGM)

experiences as a superfluid film forms onto the microsphere surface (27,29). The film thickness

d0 is then given by ∆ω0/G, with G = ∂ω0

∂x
the optomechanical coupling rate which describes the
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Figure S1: Scanning electron micrographs. Close-up (a) and large-scale (b) electron micro-
graph of three fabricated microspheres of differing stem length, held in place via UV-curing
adhesive. The upper device was employed in the experiments. The white coloration in the UV
glue is an artefact due to charging in the scanning electron microscope.

optical cavity angular resonance frequency shift per unit deposited superfluid film thickness on

the resonator surface (40). Microsphere resonators support a wide variety of WGM resonances

described by their radial, polar and azimuthal mode numbers along with their (TE or TM)

polarization (62). However all these resonances have here a similar coupling strength G (see

section 2.5), such that specific identification of the tracked WGM is not required.

An additional means to determine the film thickness is available for saturated films, as used

in these experiments. As described above, the film is formed and thickened by injecting con-

trolled volumes of 4He gas into the sample chamber via a capillary. After a certain volume, any

additional injected 4He gas leaves the WGM resonance frequencies essentially unaffected. This

corresponds to the regime of saturated film (34, 63), which differs from the unsaturated regime

of our previous works (27, 28, 32). At this point the helium pressure in the chamber is equal to

the saturated vapor pressure p0, and any additional helium gas liquefies into a superfluid reser-

voir at the lowest point of the sample chamber. In this saturated regime, the film thickness is

solely determined by the height z between the microsphere and the reservoir, and can be ob-

tained by equating the van der Waals and gravitational chemical potentials µvdW = −αvdW

d3
and



µgrav = gz, yielding (34):

d0 = 3

√
αvdW

gz
(1)

Here αvdW = 2.6×10−24 m5s−2 is the van der Waals coefficient for silica (40) and g = 9.8 m.s−2

the gravitational acceleration. The latter method is for our system the most precise technique to

determine the film thickness.

• The sphere is held at a height z = 2 cm +/- 1 mm above the lowest point in the sample

chamber. In the saturated regime, Eq. (1) predicts a film thickness of d0 = 23.7 nm +/-

0.4 nm.

• Using the WGM shift to determine the superfluid film thickness was less precise in these

experiments. We observed an optical mode shift of 29 pm after a first helium injection.

Using an optomechanical coupling rate G/2π = 0.2GHz/nm (see section 2.5) this optical

shift corresponds to a film thickness d0 = 18 nm. Several days later we added more

helium in order to better approach the experimental set-point shown in Fig. 2 of the

main text and observed a mechanical mode frequency shift of 13 Hz, which suggest an

additional film thickness of 2-3 nm, adding up to a total film thickness of ≃ 21 nm. Since

these measurements were done over several days and combine two different techniques,

this value has a larger uncertainty.

• A third option to determine the film thickness is using the eigenmode simulations in

COMSOL. This is achieved by fitting the measured experimental frequency of the funda-

mental third sound mode (72 Hz), using the film thickness as fit parameter. This method

leads to an estimated film thickness of ∼27 nm. This value has an uncertainty of around

3 nm, due to uncertainties in the exact length of the stem which defines the fundamental

third sound mode (see section 2.3). The glue with which the stem is glued to the holder



could affect the length of the stem. A deviation of 400µm could lead to a film thickness

of 24 nm with matching frequency of 72 Hz.

Based on these calculations, we determine the superfluid film thickness to be 24 nm +/-

3 nm, which is within the error bars and agrees with all three thickness estimation methods.

2.3 Calculation of the third sound modes of the microsphere resonator

Previous experimental work with superfluid third sound resonators mainly employed disk-

shaped resonators (27–29, 38, 39), for which analytical expressions (in the form of Bessel

modes) exist for the third-sound resonances. While similar expressions exist for spheres (spher-

ical harmonics), none naturally exist for the sound modes confined to the 2D outer surface

of an arbitrary 3D geometry, such as the silica microsphere resonator including its supporting

stem shown in the SEM micrograph in Fig. 3(a) of the main text. To address this, we note

that the superfluid helium flow in the third sound wave is considered inviscid, irrotational and

incompressible. (Indeed, while superfluid helium is in fact quite compressible (64–66) (with

a bulk modulus of approximately 8 MPa compared to 2 GPa for water), the van der Waals

pressure exerted on the superfluid helium’s film free surface (typically in the kPa range for the

film thicknesses considered here (29)) is approximately three orders of magnitude lower than

helium’s bulk modulus. As a consequence, any local influx of superfluid predominantly leads

to a thickening of the film and not an increase in density, such that the superfluid may be well

approximated as incompressible in the third sound wave). As such it is a potential flow and, in

the limit of small wave amplitude, the out-of-plane deflection of the superfluid surface η (r⃗, t)

obeys the simple wave equation: (
∇2 − 1

c2
∂2

∂t2

)
η = 0 (2)



Here c is the speed of sound, which neglecting the influence of surface tension, takes the form

c3 =
√

3ρs
ρ

αvdW

d3
(40). Assuming a separable time-harmonic standing wave solution, of the kind

η (r⃗, t) = η (r⃗) eiΩt, leads to the Helmholtz equation for the spatial mode profile η(r⃗):

(
∇2 + k2

)
η(r⃗) = 0, (3)

where k2 = Ω2

c2
and the displacement profile η(r⃗) is defined on the (2D) surface of the (3D)

resonator geometry. When the resonator is a sphere of radius R, the third sound modes are given

by the eigenfunctions of the angular part of the Laplacian operator ∆ = ∇2, called the spherical

harmonic functions Y l
m (θ, ϕ) of degree l and order m, with eigenvalue k2 = l(l + 1)/R2 and

frequency:

Ω = kc =
c
√
l(l + 1)

R
. (4)

Similarly, the third sound modes confined to the surface of an arbitrary three dimensional

geometry may be obtained through solving the Helmholtz equation on the exterior 2D surface

of this 3D geometry with the help of finite element modelling software (Comsol Multiphysics).

We use this technique to obtain the modes of oscillation of a superfluid film confined to the

surface of a silica microsphere whispering gallery mode resonator, including its supporting

stem.

Three such resonators, of differing stem length l, are shown in the top panel of Fig. S2(a),

protruding from the sample holder in order to allow optical access through a tapered fiber (see

bottom panel). Fig. S2(b) shows the fundamental mode of oscillation of a superfluid film con-

fined to the surface of such a silica microsphere resonator. Acoustic confinement is provided

by the large change in acoustic impedance at the contact point to the sample holder due to the

rapid change in cross-sectional area, much like in a Helmholtz resonator (67). This is evidenced

by the fact that the obtained resonance frequency ΩM/2π =∼ 86Hz for a 24 nanometer thick

film—which reasonably closely matches that observed in the experiments—is essentially inde-
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Figure S2: Silica microsphere resonators. (a) Top: three microspheres of varying diameter
and stem length imaged through the sample chamber window. Bottom: image of the silica
microsphere and the coupling tapered fiber, measured at cryogenic temperature with a long
working distance microscope objective. (b) Fundamental third sound eigenmode localized to
the fiber stem, obtained through finite element simulations. The rapid enlargement of the cross-
section represents the point at which the fiber stem is glued to the sample holder. Inset shows
how the fluid motion alternatively thins (and thickens) the film around the tip of the sphere. (c)
Higher order third sound excitations of the fiber stem and microsphere. (d) Third sound modes
localized to the microsphere tip, closely resembling the Y 2

2 (θ, ϕ) and Y 5
5 (θ, ϕ) eigenmodes of

an ideal sphere.



pendent of the choice of fixed (Dirichlet) or free (von Neumann) boundary condition at the edge

of the simulation domain (40). For this fundamental acoustic resonance, superfluid oscillates

back and forth between the surrounding bath and the tip of the sphere, thereby efficiently mod-

ulating the whispering gallery mode optical path-length, as shown in the inset of Fig. S2(b).

Higher order excitations of the stem and sphere are displayed in Fig. S2 (c).

This acoustic confinement through impedance mismatch is also at play at the level of the

thin neck which joins the silica microsphere to the silica fiber stem. This results in (higher

frequency) third sound modes localized on the spherical tip, as shown in Fig. S2(d), with mode

profiles and eigenfrequencies closely matching those given by the spherical harmonic functions

Y l
m (θ, ϕ) describing the eigenmodes of a perfect sphere (see section below).

Sphere modes

In addition to the fundamental stem mode discussed in the main text, we observe a number of

high-frequency modes consistent with third sound modes localized on the microsphere itself.

Fig. S3 shows a representative spectrum, acquired with a film thickness of ∼ 7.5 nm. A

number of third sound modes are visible with frequencies ranging from tens to hundreds of

kHz and Q factors in the 104 range. These modes can be brought into regenerative oscillation

with nanowatts of optical power. Which particular mode experiences dynamical backaction is

strongly dependent on laser-cavity detuning. Fig. S3(b) records the frequencies of the third

sound modes which could be brought into lasing during an experimental run. Both their density

and frequency are consistent with spherical harmonics Y l
m of an ideal sphere (pink bands, where

l is incremented from 1 to 13). More precise mode identification was not performed here, as

identifying the mode frequency provides information only on the degree l (see Eq. 4), and

spherical harmonics of degree l have 2l+1 degeneracy (the order m can take integer values from

−l to l). This is illustrated in the inset of Fig. S3(b), which displays the analytical spherical
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Figure S3: Third sound modes localized on the microsphere. (a) Power spectrum showing a
number of high-frequency third sound modes, acquired with a film thickness of approximately
7.5 nm. (b) Matching of experimentally observed lasing modes (blue dots) to frequency of
spherical harmonics Y l

m of an ideal sphere (see Eq. (4)), (width of band 2 kHz).

harmonic modes of an ideal sphere Y l
m (θ, ϕ), along with the corresponding eigenmodes of the

sphere with stem obtained through finite element simulation (negative values of m which rotate

the eigenmode are not shown here).

2.4 Acoustic losses
2.4.1 Measurement of acoustic losses in the weakly pumped thermal Brownian motion

regime

The intrinsic acoustic linewidth of the superfluid stem mode Γ is obtained by fitting the exper-

imentally measured power spectral density below the threshold for regenerative oscillation, in

the weakly pumped thermal Brownian motion regime. An example of this, measured with an

incident power of 680 fW, is shown in Fig. S4. Accounting for the experimental uncertainty,
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Figure S4: Measurement of the stem mode acoustic linewidth. Power spectral density (PSD)
of the fundamental stem mode measured at an input power of 680 fW (blue), along with a
lorentzian fit to the data (dashed red line). Accounting for uncertainty across repeated measure-
ments, we extract an intrinsic damping rate Γ/2π = 1.3± 0.2 Hz.

we extract an intrinsic loss rate Γ/2π = 1.3± 0.2 Hz. As this value is close to the 1 Hz resolu-

tion bandwidth of our spectrum analyzer (Agilent N9010 EXA) , we corroborate it through an

analysis of the superfluid acoustic losses in the following section.

2.4.2 Modelling the superfluid acoustic losses

In this section, we evaluate the acoustic losses of the superfluid stem mode discussed in the

main text. We start by estimating the radiation-limit quality factor Qrad. As mentioned above,

acoustic confinement is provided by the large change in acoustic impedance at the contact point

to the sample holder due to the rapid change in cross-sectional area, as illustrated in Fig. S1.

This impedance mismatch reflects incoming superfluid waves, confining acoustic energy within

the superfluid resonator. Since the contrast in acoustic impedances is finite, this reflection is

only partial, and acoustic energy escapes the resonator, leading to acoustic losses, which play

here the role of clamping losses in anchored mechanical resonators (68). These can be estimated



in a similar fashion to acoustic Helmholtz resonators in air (69).

To do this, we consider the superfluid wave shown in Fig. S5 (a), where the amplitude η(x, t)

takes the form η = η0 cos(ωt − kx). The energy per unit area carried by the wave under the

form of kinetic and potential energy takes the form (70):

E =
1

2
ρHegvdw η20, (5)

in the limit of small amplitude. This result is identical to gravity waves, but the gravitational

acceleration g has been replaced by the van der Waals acceleration of the substrate gvdw =

3αvdW

d40
. (We note that with our parameters gvdw ≃ 2 × 107 m·s−2 ≫ g, which explains why

gravity can be neglected in our experiments.) The power carried by the wave per unit length is

given by E times the group velocity of the wave vg. Third sound waves in superfluid helium are

deep into the dispersionless shallow water wave limit (d0/λ ∼ 10−5 here), such that vg = vϕ =

c3. The power carried by the wave is thus:

P = Evg =
1

2
ρHegvdw η20c3 (6)

Figure S5 shows the normalized wave amplitude eigenmode profile obtained through finite

element modelling as detailed in section 2.3. The amplitude is plotted as a function the the arc

length highlighted in the inset, where the ‘0’ coordinate corresponds to the tip of the micro-

sphere. Due to the finite impedance mismatch there is a finite motion of the superfluid film at

the level of the ‘neck’ of the superfluid Helmholtz resonator, materialized by the red dot. This

launches a wave with power 1
2
ρHegvdw η20c3 into the environment. The radiative quality factor

Qrad is defined as 2π times the ratio between the total energy stored in the system W and the

radiative energy lost during one cycle of oscillation at resonance ∆Wrad (68):

Qrad = 2π
W

∆Wrad

(7)
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Figure S5: Modelling the superfluid acoustic losses. (a) Cross-section of a superfluid third
sound wave, showing the wave amplitude η0 and the phase/group velocity c3. The power P per
unit length (along the ŷ direction) carried by the wave through the dashed black line is given by
(6). (b) Finite element simulation of the stem mode normalized displacement (see Fig. S2(b)),
with the displacement at the level of the ‘neck’ of the resonator highlighted by the red circle.

Substituting into (7) the values of W and Wrad obtained through Eqs.(5) and (6), we get:

Qrad =
2πf

c3

∫∫
res.

η2(r⃗) dA∫
circ.

η2 (r⃗) dl
, (8)

where the numerator integral is carried over surface area of the resonator (silica sphere+stem),

while the denominator integral is carried over the circumference of the neck of the resonator

through which power flows into the environment. Using the results of the finite element mod-

elling, Eq. (8) provides an estimate for the radiative decay rate Γrad = Ω/Qrad. We find

Γrad/2π = 1.5 Hz.

Unambiguous identification of all damping mechanisms in third sound remains an open

problem in the field. The main known dissipation channels include thermal dissipation arising

due to the temperature gradient between the peaks and troughs of the sound wave, dissipation

due to interactions with pinned vortices, and radiation losses (71). The total quality factor Qtot is

then related to the individual quality factors by Q−1
tot = Q−1

rad+Q−1
other. Given the over two orders

of magnitude larger Q factors measured on the sphere modes, which are better confined to the

extremity of the microsphere (see section 2.3), it is reasonable to assume that radiative losses

are the dominant source of loss for the stem mode, such that Γrad ≃ Γtot, in good agreement



with the experimentally measured values discussed in the previous section.

2.5 Calculation of effective mass, coupling rate and thermal conductance
Optomechanical coupling G

Calculating the optomechanical coupling G requires identification of the employed WGM in

order to compute its field overlap with the superfluid coating the resonator (40). However,

microspheres have a very dense whispering gallery mode spectrum, with WGMs differing by

their radial, polar and azimuthal mode orders (n, l and m respectively), along with their TE

or TM polarization (62), as illustrated in Fig. S6(a). This large WGM mode density makes

it difficult to identify the mode used in the experiments. Fortunately, changes in the WGM

order have only a modest influence on the coupling strength, with a < 1% change arising from

incrementing the radial or polar order beyond the fundamental mode (see Fig. S6(a)).

A larger difference, on the order of 5%, arises between TE and TM polarizations. Indeed,

the WGMs with a dominant radial E field component have a larger field at the surface due to the

orthogonal E field discontinuity at the silica interface (40). Calculation for 100 WGMs closest

in resonance wavelength to 1550 nm shows that their G is bounded between 1.9 × 1017 and

2.1 × 1017 Hz/m, allowing us to constrain the uncertainty to within ∼10%. These calculated

values are in good agreement with the analytical expression for a circular WGM resonator

G = −ω0

R
(72), corrected for the lower dielectric permittivity of superfluid helium (40):

G =
∂ω0

∂x
≃ −ω0

R

(
1− εsf
1− εSiO2

)
, (9)

which predicts G/2π = 1.93 × 1017 Hz/m for a 55µm radius sphere. Here εsf = 1.058 is the

relative permittivity of superfluid helium (73), and εSiO2 = 2.1 that of silica. We note the value

of G is calculated with a radius of 55 µm, obtained by an optical microscope measurement.

Elsewhere a value of 49.5 µm obtained by SEM is used. This discrepancy is due to the oblate

shape of the reflown microsphere.



Figure S6: Optomechanical coupling and thermal conductance. (a) Whispering gallery
modes of a 55 µm radius microsphere resonator, obtained through finite element simulation.
i) Fundamental radial n = 1 and polar l = 1 WGM with azimuthal number m = 320 and
resonance wavelength λ0 = 1506 nm. Its optomechanical coupling strength calculated through
FEM (40) is G/2π = 1.883×1017 Hz/m. ii) Higher order polar WGM (n = 1; l = 2; m = 320),
with optomechanical coupling strength G/2π = 1.889 × 1017 Hz/m. iii) Higher order radial
WGM (n = 2; l = 1; m = 320), with G/2π = 1.903 × 1017 Hz/m. (b) Calculation of the
thermal conductance of the microsphere resonator. An absorbed power of 1 pW at the level of
the spherical tip leads to a steady-state temperature increase by 0.24 mK, corresponding to a
thermal conductance Gth = 4.1× 10−9 W/K at a thermal bath temperature of 284 mK. Physical
parameters used in the simulation are summarized in Table S3.



Effective mass

The effective mass of an acoustic mode taken at a reduction point R⃗ is obtained by reducing the

system to a point mass meff moving with velocity v(R⃗) possessing the same kinetic energy Ek

as the original system, that is meff = 2Ek

v(R⃗)2
. For a third sound mode, this takes the form (40):

meff =
2Ep

v2(R⃗)
=

2
∫∫ 3ραvdWη2(r⃗)d2(r⃗)

2d4

η2(R⃗) Ω2
, (10)

where Ep = Ek is the potential energy stored in the third sound wave, and the integral is taken

over the surface A of the resonator. For the fundamental mode of the sphere and stem shown in

Fig. S2(b), with a reduction point on the equator of the microsphere and a 24 nm film thickness,

meff = 5.1× 10−3 kg. Note that this value is approximately 2 billion times larger than the total

mass of superfluid covering the resonator m = A d ρHe = 2.65× 10−12 kg. The larger effective

mass arises from the fact we consider here only the out-of-plane displacement η of the fluid

interface (which couples to the light), while the majority of the superflow occurs in plane (40).

Radiation pressure Single photon optomechanical coupling rate g0rp

For the low-frequency stem mode shown in Fig. S2(b), the superfluid displacement is uniform

along the tip of the microsphere where the light is confined, such that the radiation pressure

single photon optomechanical coupling rate g0rp is given by (10, 40):

g0rp = Gxzpf = G

√
h̄

2meffΩ
. (11)

With G/2π = 2× 1017 Hz/m (see section 2.5) and meff = 5.1× 10−3 kg (see section 2.5), this

yields xzpf = 4.8× 10−18 m and g0rp/2π = 0.95 Hz.



3 Thermal-electric circuit analogy

The fountain pressure in superfluid helium is given by (33):

Pfp = ρHe SHe(T )∆THe, (12)

where ρHe is the superfluid helium density, SHe(T ) is the temperature-dependent entropy of

helium, and ∆THe = THe − T is the difference between the environment temperature T and

the superfluid film covering the resonator at temperature THe. When calculating the fountain

pressure force the challenge is to precisely estimate the temperature rise in the superfluid film,

because it strongly depends on the thermal parameters of the system (thermal conductivity,

specific heat, Kapitza resistance, vapor pressure etc), which in turn are all strongly temperature-

dependent. To model this system we use the technique of the thermal-electric analogy.

The thermal-electric analogy as a lumped-element model is a well known approach to anal-

yse and simulate a variety of complex thermal systems (74,75). Applications of thermal equiv-

alent circuits range from designing heat sinks for semiconductor circuits (76) and understand-

ing the impact of solar radiation on building energy consumption (77) to battery pack thermal

management (78). Here we use the analogy between thermal quantities and electric quantities

(summarized in Table S1) to transform our thermal system into an electric circuit analog. In

figure S7 a) we show a schematic of our thermal system with the equivalent electric quanti-

ties and in b) the electric circuit as an analog representation of our thermal system. The heat

source in our system is the absorbed intracavity optical power in the silica sphere, which is rep-

resented by the current source Iph in the circuit. There are two paths for the heat flow towards

the thermal bath (dark grey). First it can flow through the substrate itself, i.e. the silica stem

which is thermally anchored to the cryostat (beige colored area). Second it may flow through

the silica/superfluid interface (striped line) with interfacial resistance RK into the superfluid

helium (light blue color) and dissipate via evaporation. Because the heat can dissipate through



Figure S7: Electric-thermal analogy scheme. a) shows the schematic of our thermal system
with the analog electric quantities. The analogy for the heat source (absorbed intra cavity power)
is a current source Ilight and the electric ground represents the thermal bath of the system. b)
Electric circuit analogy of our thermal system. The voltages Vsub and VHe are the analogs of the
temperatures in the substrate and the superfluid film.



electric thermal superfluid mass flow
charge q[A · s] heat Q[J ] mass m[kg]

current I[A] heat flow rate Q̇[W ] mass flow rate ṁ[kg/s]
voltage V [V ] temperature T [K] chemical potential µ[J/kg]

resistance R[V/A] heat resistance Rth[K/W ] -
capacitance C[A · s/V ] heat capacitance Cth[J/K] mass capacitance Cm = dm/dµ[1/J ]

inductance L[H] - mass inductance Lm[m
2/kg]

I = ∆V/R Q̇ = ∆T/Rth -
I = CdV/dt Q̇ = CthdT/dt ṁ = Cmdµ/dt

Kirchoff’s current law first law of thermodynamics law of conservation of mass

Table S1: Electric, thermal and superfluid mass flow analog quantities.

both paths simultaneously, these are arranged in parallel in the electric circuit. The two main

quantities we are interested in are the temperature changes in the substrate ∆Tsub and in the

superfluid helium thin film ∆THe with respect to the thermal bath. These two quantities are

represented by the two thermal potentials (electric analogy: voltage) Vsub and VHe with respect

to some reference voltage, which is the thermal bath (electric analogy: ground). They depend

on the thermal resistances Rth, capacitance Cth, thermal bath temperature T and heat flow rate

given by the absorb photons, which is the current Iph in the electric analogy. Knowing these

values, we eventually can calculate the fountain pressure and force.

3.1 Thermal-electric elements of substrate - silica

In a lumped-element model for heat transfer an element with a non-zero heat capacity is is

modeled by two quantities in a parallel configuration: a thermal resistance Rth−sub and a thermal

capacitance Cth−sub which accounts for the element’s thermal inertia.

The thermal resistance Rsub can be simulated with COMSOL. All parameters used in this

simulation are provided in Table S3 and are for the bath temperature of 284 mK. Fig. S6(b)

shows the steady-state temperature increase in the microsphere plus stem system with Q̇ = 1

pW of optical power absorbed at the level of the microsphere. The 0.24 mK temperature in-



crease corresponds to a thermal resistance Rth−sub = 2.44 × 108 K/W and a thermal con-

ductance Gth−sub = R−1
th−sub = κSiO2@284mK × ϕ = 4.1 × 10−9 W/K, where κSiO2@284mK =

1.6 × 10−3 W/m/K is the thermal conductivity for silica at 284 mK and ϕ = 2.52 × 10−6 m

is a temperature-independent geometrical factor (which we obtain from this simulation). The

thermal conductivity of silica κSiO2(T ) is temperature dependent. In figure S8 a) we fitted a

function of the form κSiO2(T ) = 0.0000488638× T + 0.0212904× T 2 − 0.00436582× T 3 −

0.000101651 × T 4 to the data from (79) to get a temperature-dependent thermal resistance of

the silica microsphere Rth−sub(T ) = (κSiO2(T )× ϕ)−1.

The thermal capacitance of the substrate is given by Cth−sub = cSiO2(T )×msub, with msub

being the mass of the microsphere (incl. stem) and cSiO2(T ) = 0.00105 × T + 0.0018 × T 3

is the temperature-dependent specific heat capacity for silica (see figure S8 b)), which is a fit

function to the data from (80).

3.2 Thermal Kapitza resistance at the interface

The interface between the silica and the superfluid thin-film results in an interfacial thermal

resistance called the Kapitza resistance. It is temperature and material dependent, and arises

due to the large acoustic impedance mismatch between silica and superfluid helium, reducing

phonon propagation from one medium to the other. According to (81) the Kapitza resistance

has the functional form:

R
′

K(T ) =
15h̄3ρSiO2c

3
tSiO2

2π2k4
BρHec1He

F (
clSiO2

ctSiO2

)T 3
, (13)

where ρSiO2 and ρHe are the densities of silica and liquid helium, ctSiO2
and clSiO2

are respectively

the transverse and longitudinal sound velocities of silica, c1He
is the first sound speed in super-

fluid helium and F (clSiO2
/ctSiO2

) = 2.5 (81) is a silica specified function. Fig. S8(c) shows the

temperature dependency of the Kapitza resistance for a silica and superfluid helium interface



with units [m2K/W]. When calculating the Kapitza interfacial thermal resistance in our system

RK, we need to normalize it to the silica microsphere surface area, i.e. RK(T ) = R
′
K(T )/A

[K/W].

3.3 Thermal-electric elements of superfluid helium He-II

The superfluid helium thin-film is represented by the thermal resistance Rvap and the thermal

capacitance CHe. In thin superfluid films, the normal fluid component is viscously clamped to

the substrate and does not flow. Only the superfluid component, which carries no entropy, is

free to move. Thermal conductance through the liquid itself is therefore negligible, and the

thermal conductivity occurs primarily through influx of superfluid, which evaporates extracting

the latent heat of vaporization (82). To calculate the thermal conductance Gvap(T ) resulting

from this evaporative process at a temperature T, we need to multiply the resulting net helium

mass flow rate per unit area ṁHe by the latent heat of vaporization of helium LHe(T ) and divide

by the temperature change (T0 − T ), which gives the area-normalized ‘net’ energy leaving due

to evaporation. Multiplying by the silica microsphere area A gives the total evaporative thermal

conductance of our superfluid film:

Gvap(T ) = ṁHe
LHe(T )

(T0 − T )
A. (14)

The net mass flow rate per unit area is given by (25):

ṁHe(T ) = γ

√
mHemol

2πRT

(
dPV

dT

)
v.p.c

(T0 − T ), (15)

with γ = 1, mHemol
as the molar mass of helium, R = 8.3145 J mol−1 K−1 the ideal gas

constant and (dPV

dT
)v.p.c the gradient of the vapour pressure curve for helium. The saturated

vapour pressure PV(T ) curve is plotted in Fig. S8(e), and given by (73):

PV(T ) = exp(io −
L0

RT
+

5

2
log(T )), (16)



Thermal-electric quantity functional form frequency domain
Substrate thermal resistance Rsub(T ) = (κSiO2(T )ϕ)

−1 ZRsub
(T ) = Rsub(T )

Substrate thermal capaci-
tance

Csub(T ) = cSiO2
(T )msub Z̃Csub

(Ω, T ) = 1
iΩCsub(T )

Kapiza Resistance RK(T ) ≃
3h̄3ρSiO2c

3
tSiO2

π2k4
BρHec1He

T 3A ZK(T ) = RK(T )

Superfluid He thermal resis-
tance

Rvap(T ) =

(
γ
√

mHemol

2πRT (dPV

dT )v.p.cLHe(T )A
)−1

ZRvap
(T ) = Rvap(T )

Superfluid He thermal ca-
pacitance

CHe(T ) = cHe(T )mHe Z̃CHe
(Ω, T ) = 1

iΩCHe(T )

Table S2: Thermal-electric quantities in DC and frequency domain.

where i0 = 12.2440 and L0 = 59.83 J/mol is the latent heat of vaporization at absolute zero.

The temperature-dependent latent heat of vaporization of helium LHe(T ) is an interpolation

function, shown in Fig. S8 f), to the data extracted from (73). The equations 14,15,16 all

together enable us to derive a temperature-dependent expression for the thermal resistance via

evaporation Rvap(T ) = (Gvap(T ))
−1.

The temperature-dependent heat capacity of thin-film superfluid helium is given by CHe(T ) =

cHe(T )mHe, with mHe being the superfluid helium mass covering the full microsphere (incl.

stem) and cHe(T ) an interpolation of the temperature-dependent specific heat for superfluid he-

lium, with data obtained from (73) and shown in figure S8 d).

3.4 Transfer-function for the superfluid helium temperature VHe(Ω, T )

Having specified the electric analog of each thermal quantity in our system (see sections above)

and simplified it to an electric circuit (see figure S7), enables us now to use simple electric cal-

culation techniques to determine the bath-temperature dependent superfluid helium temperature

VHe(Ω, T ) and its frequency response (transfer-function) to a fluctuating heat source. This gives

us a full framework of our system so we can operate at the ideal temperature and frequency to

maximise and control the fountain pressure backaction.

First we transform all thermal-electric quantities into the frequency domain, so they can



Figure S8: Temperature-dependent material parameters. Here we present all the
temperature-dependent material parameters used for the thermal-electric analogy model. a)
Fitted thermal conductivity κSiO2(T ) of silica with data points taken from literature (79). b)
Fitted specific heat capacity cSiO2(T ) with measured data from (80). c) Kapitza resistance of
the interface between liquid He-II and silica (81). The figures d),e) and f) are all helium-related
parameters. In d), we show the interpolated the specific heat capacity of helium cHe(T ) obtained
from the data in Ref. (73). e) plots the vapour pressure for helium, which is given in Ref. (73)
in functional form (Eq. 16). In f) LHe(T ) is the interpolation of the data for the latent heat of
vaporization (73).



be written as complex impedances, which are all summarized in table S2. The total complex

impedance for the substrate and superfluid helium are respectively given by:

Z̃sub(Ω, T ) =

(
1

ZRsub
(T )

+
1

Z̃Csub
(Ω, T )

)−1

(17)

and

Z̃He(Ω, T ) =

(
1

ZRvap(T )
+

1

Z̃CHe
(Ω, T )

)−1

. (18)

The combined impedance of superfluid helium and the Kapitza impedance is Z̃KHe(Ω, T ) =

Z̃He(Ω, T ) + ZK(T ), as these two elements are in series, see Fig. S7. This leads to the total

impedance of the circuit:

Z̃tot(Ω, T ) =

(
1

Z̃sub(Ω, T )
+

1

Z̃KHe(Ω, T )

)−1

. (19)

Therefore the voltage change (thermal realm: temperature) in the substrate is given by

Ohm’s law:

Ṽsub(Ω, T ) = IphZ̃tot(Ω, T ). (20)

Considering the temperature drop over the Kapitza resistance, the temperature difference in the

superfluid helium can be written as:

ṼHe(Ω, T ) = Ṽsub(Ω, T )− VK(T )

= IphZ̃tot(Ω, T )− ĨKHe(Ω, T )ZK(T ).
(21)

The heat flow rate (electric-analogy: current) towards the superfluid helium ĨKHe(Ω, T ) is given

by Kirchhoff’s law as:

ĨKHe(Ω, T ) = Iph − Ĩsub(Ω, T ), (22)

Using equations (20), (22) and the relation Ĩsub(Ω, T ) = Ṽsub(Ω, T )/Z̃sub(Ω, T ) in equation

(21), results in:

ṼHe(Ω, T ) = IphZ̃tot(Ω, T )−

(
Iph −

IphZ̃tot(Ω, T )

Z̃sub(Ω, T )

)
ZK(T )

= Iph

(
Z̃tot(Ω, T )− ZK(T ) +

ZK(T )Z̃tot(Ω, T )

Z̃sub(Ω, T )

)
.

(23)



Figure S9: Modelled transfer functions of the experimental system. In all figures the red dot
represents the operation point of the experimental system. Figure a) shows a contour-color plot
of the superfluid helium temperature increase ∆THe(Ω, T ) and its dependency on the thermal
bath temperature T and the modulation frequency Ω. b) is a line plot of ∆THe(ΩM, T ) at the
experimental mechanical frequency ΩM. Figure c) shows the interpolation function SHe(T )
along with the data of entropy of superfluid helium from (73). d) plots the superfluid helium
fountain pressure Pfp(ΩM , T ). e) is a contour-color plot of the dynamical backaction function
χHe(Ω, T ) and f) is a 2D plot of the same function at the given bath temperature T = 284mK.



The voltage here is a complex number. The real temperature increase in the superfluid helium

film and the substrate are given by the modulus of the voltage:

∆THe(Ω, T ) = VHe(Ω, T ) = |ṼHe(Ω, T )| (24)

and

∆Tsub(Ω, T ) = Vsub(Ω, T ) = |Ṽsub(Ω, T )|. (25)

Fig. S9 (a) and (b) demonstrate ∆THe(Ω, T ) and its dependency on the bath temperature T and

the drive frequency Ω for an absorbed power of Iph = 1 pW, where the red dot displays the

operation point of our experimental system. Together with the temperature dependent entropy

SHe(T ), which is given by an interpolation to some measured data from (73) (see figure S9 c)),

the fountain pressure takes the form:

Pfp(Ω, T ) = ρHe SHe(T )∆THe(Ω, T ), (26)

and is plotted in figure S9 d) for the experimental mechanical frequency ΩM. This model shows

that our operation temperature of T = 284mK is the optimal temperature that results in the

maximum fountain pressure for our system. This maximum arises as a consequence of two

competing trends. On one hand, the entropy is an increasing function of T, pointing towards

a stronger fountain pressure interaction at higher temperatures (Fig.S9c). On the other hand,

the increase in heat capacity and thermal conductivity at higher temperatures reduces the tem-

perature rise ∆T , counteracting the previous effect (Fig.S9b). The fountain pressure force is

finally:

Ffp(Ω, T ) = Pfp(Ω, T )A, (27)

with A being the surface area of the whole resonator.



3.5 Thermal response time

In addition to maximising ∆THe(Ω, T ) to optimise the fountain pressure strength, it is also

important to understand and optimize the dynamical backaction efficiency of the system. The

theory of photothermal heating and cooling (17,20) shows that strongest backaction is achieved

in the regime ΩM τth ∼ 1, where τth corresponds to the thermal response time of the superfluid

film. The thermal time delay τth is given by the relation τth = ϕ/Ω, with Ω the mechanical

frequency and ϕ the phase of the complex transfer function ṼHe(Ω, T ):

ϕHe(Ω, T ) = arg(ṼHe(Ω, T )), (28)

which means that τth is frequency- and temperature-dependent. The unitless functional form:

χHe(Ω, T ) =
Ωτth((Ω, T ))

1 + (Ωτth((Ω, T )))2
, (29)

represents the optimal time delay of the bolometric forces (16–19). For ΩM τth ∼ 1 we get

χHe(Ω = 1/τth, T ) = 0.5. Fig. S9(e) shows χHe(Ω, T ) in a color-contour plot for our system.

Fig. S9(f) is a line cut through (e) for a fixed temperature of 284 mK. The red dot marks the

mechanical mode frequency ΩM of the system, which is at the maximum value of 0.5 for χHe.

As a consequence, our choice of superfluid mechanical mode and cryostat temperature allows

us to operate at both the optimal point for fountain pressure strength (Fig.S9d), and optimal

time-delayed forcing for dynamical backaction (Fig.S9f).

3.6 Figure of merit - fountain pressure dynamical backaction optimiza-
tion

The two main dynamical forces in our system are the fountain pressure force and the radiation

pressure force given by:

Frad = ncavh̄G, (30)



Figure S10: Temperature ratio and thermal response time of superfluid helium and the
substrate. At the frequency and temperature used in the experiments (red dot), the temperature
of the film closely tracks that of the underlying silica resonator, allowing these to be modelled
as a common element in the ODE simulations of section 4.

where ncav is the intracavity photon number, h̄ the reduced Planck constant and G the optome-

chanical coupling rate. Having the two forces, fountain pressure force and radiation pressure

force, and the dynamical backaction efficiency χHe(Ω, T ) leads to a figure of merit for the pho-

tothermal effect in our system:

fM(Ω, T ) =
Ffp(Ω, T )

Frad

χHe(Ω, T ). (31)

4 Numerical model

Differential equations

The dynamical behaviour of the superfluid resonator may be described by three coupled dif-

ferential equations relating to the intracavity photon number ncav, the change in mean film

thickness at the level of the WGM x and the temperature T . Each of these parameters respec-

tively responds on a characteristic timescale of 1/κ ∼ ns; τth ∼ ms and 1/Γ ∼ s. Since the

optical decay rate κ is much larger than all other decay rates, we consider that the intracavity



photon number ncav reacts instantaneously to any changes in the cavity (adiabatic limit), such

that it takes the steady-state form (11):

|a|2 = ncav =
κex

∆2 +
(
κ
2

)2 P

h̄ωL

, (32)

where κ = κex + κi is the sum of the extrinsic and intrinsic loss rates respectively (11), and P

the laser power at the level of the fiber taper. The detuning ∆ is equal to:

∆ = ∆0 +Gx with G =
∂ω0

∂x
, (33)

with ∆0 the cavity detuning for zero displacement and G the optomechanical coupling rate (see

section 2.5). The dynamics can thus be reduced to two coupled equations of motion. The first

determines the motion of the superfluid film:

meff ẍ+meff Γ ẋ+meff Ω
2 x = Ffp = ρ S(T0) (T − T0)A, (34)

where T0 and T are respectively the temperature of the environment and that of the superfluid

film covering the resonator. This equation, which assumes a constant value for the entropy

S(T0) is valid in the limit ∆T ≪ T0, which is the case in the experiments. The second governs

the evolution of the temperature T and arises from conservation of energy:

Ṫ =
ncav h̄ ωL κi αabs

mc
− Gth(T0) (T − T0)

mc
(35)

Here, αabs ∈ [0, 1] corresponds to the fraction of the intrinsic losses dissipated as heat in

the resonator, m to the resonator’s thermal mass and c its specific heat capacity, and Gth = mc
τth

the resonator’s thermal conductance. We note here that at the operational point used in the ex-

periments (Ω/2π = 72 Hz; T = 284 mK) and the low optical powers in the pW range, the

superfluid film temperature closely tracks that of the silica microsphere with minimal temper-

ature difference and phase lag (verified through the thermal model of section 3, and plotted in

Fig. S10). For this reason, in these time-domain numerical simulations, we simplify the thermal



system by considering the silica resonator and superfluid film as a common element, of mass

m and heat capacity c, dominated by the microsphere mass and heat capacity. This allows us

to accurately reproduce the experimental results, as shown below. The time dynamics of our

system are obtained by numerically solving the coupled differential equations (Eqs (34) and

(35)) with an ODE solver (MATLAB software).

Numerical simulations results

Solving these equations with the parameters provided in Table S3, we obtain the dynami-

cal behaviour of the superfluid film displacement ∆x(t), normalized optical output power

|aout(t)|2/|ain|2 (where |aout(t)|2 and |ain(t)|2 are respectively the output and input optical pow-

ers, and are related via input-output formalism (11,83)) and the temperature fluctuations ∆T (t)

around the environment temperature of T = 284mK. The sub-figures c), d) and e) in figures

S11, S12 and S13 show the time-dependency of these parameters in the steady-state phonon

lasing regime (i.e. after the initial transient dynamics) at the input powers 3.4 pW, 6.8 pW and

68 pW. The simulations are performed at a cavity detuning where the superfluid film’s mo-

tional amplitude is maximized (represented by the red dot in sub-figure a)). To appropriately

compare the numerical simulations with the measurements, done with a spectrum analyzer and

with a heterodyne detection scheme, we added an optical local oscillator field and applied a

Fourier transformation to the time-dependent normalized optical output field in the steady state

regime of the system for different cavity detunings and optical input powers. The black line in

all sub-figures a) of figures S11, S12 and S13 demonstrates the peak value of the fundamental

mechanical mode in the normalized spectral density versus cavity detuning for different input

powers. This we compared to the normalized amplitudes of the measured mechanical mode at

different cavity detunings as well and same input powers, which are displayed as blue dots in

all sub-figures a) of figures S11, S12 and S13. The numerical simulation is fitted to the experi-



Figure S11: Numerical simulation for 3.4 pW input power. a) Mechanical mode (Ω/2π =
72 Hz) amplitude as a function of cavity detuning, where the blue dots represent the normalized
measured mode peak of the power spectrum and the black line the numerical simulations. b)
Normalized optical transmission of the whispering gallery mode resonator depending on the
detuning, obtained by plotting the experimentally measured normalized spectral density peak
value of the calibration peak at 180 Hz (blue dots) and the local oscillators (80 MHz) normalized
spectral density peak value in the numerical simulations (black line). The numerical simulations
in c), d) and e) show the time dependency in the steady state regime of respectively the displace-
ment ∆X , the cavity transmitted normalized optical power and the temperature fluctuation ∆T
around T0 = 284mK. These simulations are performed at the detuning represented by the red
dot in a) and b).



Figure S12: Numerical simulation for 6.8 pW input power. a) Mechanical mode (Ω/2π =
72 Hz) amplitude as a function of cavity detuning, where the blue dots represent the normal-
ized measured mode peak of the power spectrum and the black line the numerical simulations.
b) Transmitted optical power from of the whispering gallery mode depending on the detuning,
obtained by plotting the experimentally measured normalized spectral density peak value of the
calibration peak at 180 Hz (blue dots) and the local oscillators (80 MHz) normalized spectral
density peak value in the numerical simulations (black line). The numerical simulations in c),
d) and e) show the time dependency in the steady-state regime of respectively the displace-
ment ∆X , the cavity transmitted normalized optical power and the temperature fluctuation ∆T
around T0 = 284mK. These simulations are performed at the detuning represented by the red
dot in a) and b).



Figure S13: Numerical simulation for 68 pW input power. a) shows the mechanical mode
(Ω/2π = 72 Hz) amplitude depending on the cavity detuning, where the blue dots represent
the normalized measured mode peak of the power spectrum and the black line the numeri-
cal simulations. b) Normalized optical transmission of the whispering gallery mode resonator
as a function of detuning, obtained by plotting the experimentally measured normalized spec-
tral density peak value of the calibration peak at 180 Hz (blue dots) and the local oscillators
(80 MHz) normalized spectral density peak value in the numerical simulations (black line). At
this high power, the D fountain pressure force causes the superfluid film to thicken, which leads
to an optical resonance shift of 19.6 MHz. The numerical simulations in c), d) and e) show
the time dependency in the steady state regime of respectively the displacement ∆x, the cavity
transmitted normalized optical power and the temperature fluctuation ∆T around T0 = 284mK.
These simulations are performed at the detuning represented by the red dot in a) and b).



mental data by using αabs, the fraction of dissipated optical power that gets converted into heat

in the resonator, and the mechanical mode decay rate Γ as fitting parameters. The best results

could be obtained with αabs = 0.35 and Γ being 1 Hz, 1.5 Hz and 5 Hz respectively for the input

powers 3.4 pW, 6.8 pW and 68 pW, pointing towards an increase in the intrinsic damping rate

with laser power. Such nonlinear damping has already been reported in the context of super-

fluid helium films (84), as well as silicon optomechanical crystals (22). In addition to the strong

dynamical back action, induced by the photo thermal effect, we observe a static photothermal

effect in the simulations as well. As explained in the main text, this static effect is caused by the

rise of the mean temperature of the superfluid film. In sub-figure e) of the figures S11, S12 and

S13 it is shown that the mean temperature rises by about 0.2 mK, 0.37 mK and 3.6 mK respec-

tively for the input powers 3.4 pW, 6.8 pW and 68 pW. This increase in temperature causes the

superfluid film to thicken, shifting the optical mode. For the input power of 68 pW the optical

mode is shifted by 19.6 MHz, corresponding to an optical tunability of 288 GHz/µW, as shown

in Fig. S13(b). This DC thicknening of the film is also apparent in Fig. S13(c), which shows

the superfluid film oscillations around a new, thicker equilibrium position.

We note that the simplified equation solved for the mechanical oscillator Eq. (34) only in-

cludes a viscous damping term and a driving force through the fountain pressure interaction. It

does not include a thermal Langevin force, and as such the only steady-state endpoints of the

simulation correspond to a large motional amplitude if the optomechanical gain exceeds the in-

trinsic losses of the resonator, or zero motional amplitude if the optomechanical gain is less than

the resonator losses, as is the case for a red-detuned laser beam (11). In contrast, the collected

experimental data is sensitive to the thermal Brownian motion of the oscillator, accounting for

the discrepancy between simulation and experimental data visible for negative (i.e. red) detun-

ing in Fig. S11(a) and Fig. S12(a). This discrepancy becomes proportionally smaller at higher

optical powers (Fig. S13(a)).



Parameter Symbol Value Unit Source
WGM intrinsic energy decay
rate

κi/2π 15 MHz measurement

WGM extrinsic energy decay
rate

κex/2π 15 MHz measurement

Third sound mode frequency ΩM/2π 72 Hz measurement
86 Hz FEM

Third sound mode effective
mass

meff 5.1× 10−3 kg FEM

Third sound mode decay rate Γ 2π × 1 Hz measurement
Optomechanical coupling
strength

G/2π 0.2± 0.01 GHz/nm FEM

Single photon optomechani-
cal coupling rate

g0/2π 0.7 Hz FEM

Microsphere radius R 49.5 µm SEM
Mean superfluid film thick-
ness

d0 24 nm measurement

Superfluid 4He density ρHe 145 kg/m3 (73)
First sound speed in super-
fluid helium

c1He
236 m/s (85)

superfluid helium mass
(covering the total micro-
sphere+stem)

mHe 2.65× 10−12 kg FEM

Silica density ρSiO2 2200 kg/m3 (86)
Silica thermal conductivity
(@284 mK)

κSiO2 1.6× 10−3 W/m/K (87)

Silica specific heat capacity
(@284 mK)

cSiO2 3.4× 10−4 J kg−1 K−1 (34)

Thermal conductance
(@284mK)

Gth−sub 4.1× 10−9 W/K FEM

Silica microsphere area (incl.
stem)

A 7.7× 10−7 m2 SEM

Silica microsphere mass
(incl. stem)

msub 4.9× 10−8 kg FEM

Longitudinal sound velocity
of silica

clSiO2
5968 m/s (88)

Transverse sound velocity of
silica

ctSiO2
3764 m/s (88)

Thermal response time τth 5.7 ms FEM
He II entropy per unit mass
(@284 mK)

S 0.16 J/kg/K (73)

fraction of κi dissipated as
heat

αabs 0.35 - fit

Operating temperature T 284 mK measurement

Table S3: Physical parameters used in the simulation. FEM:Finite Element modelling. SEM:
Scanning electron microscope.



5 Lasing thresholds for various systems

We benchmark our phonon lasing threshold against existing literature in Fig. 5 of the main text

and Fig. S14. We condensed the amount of systems shown in Fig. 5 and Fig. S14 to 18 different

experiments, which are representative for the majority of phonon lasing systems and driving

mechanisms (radiation pressure, electrostriction, photothermal and electrothermal interactions).

All literature references that have been used for Fig. 5 are listed in Table S4. We additionally

plot the phonon lasing thresholds of these same experiments versus resonator spring constant

and resonator mass in Fig. S14. We choose to focus our benchmark on the threshold power

Pthresh, i.e., the incident optical power, (and not on the intracavity photon number at threshold

ncav thresh) as this is the value which is most widely reported in the literature. The conversion

between the two is given by (11):

ncav thresh =
κex

∆2 + (κ/2)2
Pthresh

h̄ ω
, (36)

where κex and ∆ are respectively the extrinsic coupling rate of the cavity and the laser-cavity

detuning and κ = κ0 + κex is the total cavity loss rate, corresponding to the sum of intrinsic

and extrinsic loss rates. Systems in the good-cavity limit (Ω ≫ κ) can achieve phonon lasing at

comparatively lower intracavity photon number (22), as the optical to mechanical energy con-

version efficiency per intracavity photon is high. However the overall efficiency per launched

laser photon is limited by the lower rate at which photons enter the cavity in the good cavity

limit, when the laser is highly detuned from the cavity resonance (11).

6 Thermodynamic efficiency

The thermodynamic efficiency is estimated by multiplying the stored mechanical power with

the mechanical damping rate, yielding an acoustic power loss Pmech, which must be exactly
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Figure S14: Phonon lasing thresholds of different optomechanical and electromechanical
experiments. These are plotted versus (a) resonator spring constant and (b) resonator mass.
Details on the reference publication for each point can be found in Table S4. While Ref. (32)
considered the vibrational mode of silica microtoroid, we have classified it under ‘Superfluid’
as the superfluid helium film coating the device provided enhanced dynamical backaction.

compensated by the optical drive to maintain constant amplitude self-sustained oscillations.

Pmech =
1

2
meffΩ

2x2Γ (37)

Using the values from Table S3 and a displacement amplitude of x = 6 × 10−11 (obtained

from Fig. S11), we get Pmech = 1.2 × 10−17 W; while the dissipated optical power is given by

Pabs = P × αabs = 3.4 pW ×0.35 = 1.2 pW. This results in a thermodynamic efficiency (rate

of conversion of heat into mechanical work) of η = Pmech/Pabs = 1× 10−5.

As a comparison we calculate the thermodynamic efficiency for the carbon nanotube elec-

trothermal system with the closest lasing threshold (∼ 5 pW) (24). The mechanical power

produced to sustain phonon-lasing is:

P nano
mech =

1

2
mnano

eff Ω2
nanox

2
nanoΓnano = 4.3× 10−19W, (38)

with the effective mass mnano
eff = 2.7 × 10−21 kg, the mechanical frequency Ωnano/(2π) =

90MHz, the displacement xnano = 4 nm and the mechanical decay rate Γnano/(2π) = 10Hz (24).



The electrical power dissipated as heat required for the production of P nano
mech is approximately

Pelec = 5 pW. This results in an thermodynamic efficiency for the nanotubes ηnano = P nano
mech/Pelec =

0.86 × 10−7. This comparison indicates our system is ∼ 102 times more thermodynamically

efficient than the nanotube system with the lowest reported lasing threshold, aside from ours.

7 High-amplitude wave regime

Our work provides for the first time the combination of high precision optomechanical read-

out—capable of measuring superfluid waves with sub-monolayer thickness precision and mi-

crometer spatial resolution—with an actuation capability sufficiently strong to reach the highly

nonlinear regime where the wave amplitude becomes comparable to the film thickness. This is

a prerequisite to study the nonlinear fluid dynamics of superfluid helium films, which has been

a longstanding goal in the field (99). An example of the measured power spectral density in this

regime is shown in Fig. S15. It is measured with nanowatts of incident power and a superfluid

film thickness d ≃ 8 nm, at which lasing occurs preferentially on the third order stem mode,

as shown in Fig. S15 right. More than a hundred higher order harmonics are visible in this

high-amplitude regime, in which we estimate η ∼ d through the time-domain optical output of

the cavity.

8 Single photon detection

The fountain pressure between a region of the film at temperature T, and a bath at temperature

T0 corresponds to

Pfp = ρ

∫ T

T0

S(T ′) dT ′ (39)

For a small difference in temperature, the fountain pressure is given by (33, 34):

Pfp = ρS∆T (40)



Figure S15: High-amplitude wave regime. Left: Optical readout of the superfluid’s acoustic
motion performed with a heterodyne detection scheme with a local oscillator field offset by
80 MHz (see Figure 3 of the main text). Right: Finite element modelling of the third-order
stem mode, oscillating at 2.2 kHz. Color represents the superfluid displacement amplitude,
normalized such that max(η) = 1.

At low temperatures, the specific heat of superfluid helium is several orders of magnitude larger

than that of the underlying optical resonator material (e.g. silicon, silica) (100). For instance, at

250 mK, cHe ≃ 1000 cSiO2. Therefore for miniature optical resonators, where the thickness of

the superfluid film is no longer negligible compared to that of the resonator (consider e.g. a 30

nm thick superfluid film on either side of a 200 nm thick resonator), the entire thermal mass of

the superfluid-covered resonator is dominated by the superfluid film. The temperature increase

for a deposited energy Q corresponding to one absorbed photon is therefore given by:

∆T =
Q

mcHe

=
h̄ω

m cHe

, (41)

where m is the mass of the superfluid film, and cHe superfluid helium’s specific heat capacity.

Since the superfluid helium entropy takes the form (73):

S =

∫
cHe

T
dT, (42)



for cHe of the form αT 3,

S =

∫
αT 3

T
dT =

∫
αT 2dT =

αT 3

3
≃ cHe

3
(43)

(Which is indeed what is measured in practice, see ref. (73)). Using this, we can re-express Eqs.

(40) and (41) as:

Pfp =
ρS(T )h̄ω

ρV cHe(T )
(44)

and obtain a simple, temperature-independent expression for the induced fountain pressure re-

sulting from the absorption of a photon of energy h̄ω:

Pfp ≃ h̄ω

3VHe

(45)

The goal is therefore to minimize the volume of superfluid covering the resonator, which is

attained by reducing the resonator surface area. The above calculation is valid in the regime

where:

• The thermal response time of the resonator is slower than that of the superfluid film (which

is on the order of a few microseconds at the temperatures considered here), allowing the

thermal energy to be transferred to the superfluid film before it is lost to the environment

through the resonator’s own thermal anchoring.

• The thermal Kapitza conductance at the resonator/superfluid interface is well in excess of

the thermal conductance between the helium film and its environment mediated through

the vapor pressure. This allows heat to build up in the superfluid film before it is lost to the

environment through evaporation. This criterion does not depend strongly on the choice

of resonator material as the acoustic impedance mismatch between superfluid helium and

most solids commonly used for optical resonator fabrication (e.g., Silica, Silicon, Gallium

Arsenide) is of comparable magnitude. This condition is valid for temperatures below

∼ 300 mK.



Figure S16: Silicon 1D photonic crystal architecture. Long tethers provide thermal isolation
from the substrate.

An example architecture satisfying the above conditions is shown in Fig. S16. It consists

of a suspended 1D silicon optical crystal cavity, of the kind used in Ref. (2). Long and narrow

tethers provide sufficient thermal isolation for the heat resulting from optical absorption to be

predominantly communicated to the superfluid film. Such a resonator has a optomechanical

coupling rate simulated through FEM of G/2π =∼ 5 GHz/nm (40), (meaning that a 1 nm

change in thickness of the superfluid film shifts the optical resonance frequency by 5 GHz).

Using Eq. 45, we estimate a thickening of the film on the order of 1 nm is achievable per

absorbed photon, leading to an optical shift well in excess of the optical resonator linewidth

κ (2).

8.1 Comparison to radiation pressure per photon

We compare the magnitude of the fountain pressure induced by a photon absorption event (Eq.

45) to the radiation pressure exerted by an intracavity photon. The radiation pressure due to a

single photon acting on an element of the superfluid film —which arises due to the change in



electromagnetic energy density due to the presence of the helium—is given by:

Prad =
1

2
ε0 (εsf − 1)E2, (46)

where the electric field is normalized such that:

1

2

∫∫∫
ε0εr(r⃗)E

2dV = h̄ω. (47)

Making the (strongly) simplifying assumption that the field be essentially localized within the

optical resonator (of permittivity εr) and of constant magnitude over the mode volume Vmode,

leads to E2 ∼ h̄ω/(1/2 ε0 εr Vmode). Combined with Eq. (46), this provides an order of magni-

tude estimate of achievable the radiation pressure per photon acting on the superfluid film:

Prp ≃ εsf − 1

εr

h̄ω

Vmode

(48)

Compared to Eq. (45), we note the presence of the prefactor ( εsf−1
εr

= 5 × 10−3 for a silicon

resonator), and the fact that the superfluid volume has been replaced by the (larger) optical mode

volume. Combined, these two effects lead to an approximate 3 orders of magnitude reduction

compared to the fountain pressure, see Eq. (45).

9 Comparison with thermo-elastic stress in a crystal

The thermal stress σth arising from a temperature increase ∆T in an isotropic solid of bulk

modulus K and thermal expansion coefficient α = 1
V

(
∂V
∂T

)
is given by:

α∆T =
σth

K
, (49)

where for one absorbed photon, ∆T is given by:

∆T =
h̄ω

ρV c
(50)



This yields a thermal stress per photon of

σth =
h̄ ω αK

ρV c
(51)

This can be re-expressed in simpler form as:

σth = γ
h̄ω

V
, (52)

where we have introduced the dimensionless Grüneisen parameter γ = αK
ρc

. For silicon at low

temperatures, this takes a value of approximately γ ≃ 0.2 (101), resulting in a thermal stress

very close to the superfluid fountain pressure (Eq. (45)). It is thus primarily the compliance

of the fluid interface, combined with the engineered ability to collect the thermal energy and

operate near the optimal regime Ωτ ∼ 1 which is responsible for the ultralow threshold ob-

served here, and not a fundamentally stronger nature of the fountain pressure force in superfluid

helium, making these results broadly applicable to photothermally- and electrothermally-driven

systems.
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