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1 Supplementary files and scripts

Thermal equivalent circuit analysis script. This Mathematica notebook contains the data and
code used to generate Fig. 2 of the main text, as well as Figs.S8, S9 and S10, using the thermal
equivalent circuit analysis.

Additional simulation files and scripts are accessible from the Zenodo data repository at

https://do1.org/10.5281/zenodo.6982289.

* This repository contains the Mathematica notebook containing the data and code used to
generate Fig. 2 of the main text, as well as Figs[S8| [S9and [STO] It can be found under:
“\Zenodo repository\ Thermal Circuit notebook\ ThermalCalculationsMicroSphere_V12_AS.nb’

* This repository also contains the thermal, acoustic and optical COMSOL multiphysics
simulation files used to generate Fig. 3b of the main text, as well as Figures and

These can be found under: “\Zenodo repository\Comsol simulations’

2 Experimental details
2.1 Experimental setup

The microsphere resonator is located in a superfluid-tight sample chamber at the bottom of a
Bluefors dilution refrigerator (base temperature 10 mK) (29). Telecom laser light (A = 1554
nm) from a low-noise erbium-doped fiber laser (Koheras ADJUSTIK) is evanescently cou-
pled into the microsphere via a tapered optical fiber (27). Precise fiber positioning is achieved
through Attocube nanopositioning stages. The measurements are performed with the pulse-
tube cooler (PTC) turned off in order to minimize vibrations. When the PTC is switched off,
substitute cooling power is provided by a liquid helium ‘battery’, containing approximately 1L

of liquefied *He, located on the 4K stage, providing about 2-3 hours of measurement with the
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pulse tube off. The sample chamber contains a small volume of alumina nanoparticles in order
to increase the effective chamber surface area (~10 m?), leading to more precise film thickness
control and greater film thickness stability (38). While at base temperature, “He gas can be
injected from the top of the cryostat into the sample chamber through a thin capillary, allowing
for in situ control of the superfluid film thickness.

The microsphere resonator is obtained by melting the end of a silica single mode fiber (SMF-
28) in a fusion splicer. The non-reflown end of the fiber is then held in place on a sample holder
inside the cryostat by a large drop of UV glue. A scanning electron microscope image of three
such resonators, of differing stem length [/, is shown in Fig. We employ Norland Optical
Adhesive NOA 68 UV-curing glue for this purpose. This glue is chosen for its rapid curing time
and relatively high viscosity (5000 cps). This allows for the glue to be cured before any wicking
of the glue up the stem and onto the sphere itself which degrades its optical properties. This
gluing procedure is robust to thermal cycling down to mK temperatures and the ensuing thermal
stresses, likely due to large amount of glue used and the rough machined-aluminum sample
holder surface providing an ample contact area for adhesion. In another context (fixing silica
angle-polished fiber to smooth silicon, silica or HSQ-cladded wafers), the cryogenic survival of
NOA 68 bonds was inferior, with a >90% failure rate after 5 thermal cycles. In that context, the
use of an UV-curing glue containing a latent heat catalyst (NOA 86H from Norland Products)

was found to provide superior performance. More details can be found reference (61).

2.2 Superfluid film thickness

The mean superfluid film thickness d, covering the microsphere resonator can be estimated
by tracking the optical resonance frequency shift Awy that a whispering gallery mode (WGM)
experiences as a superfluid film forms onto the microsphere surface (27, 29). The film thickness

do is then given by Aw, /G, with G = % the optomechanical coupling rate which describes the



Figure S1: Scanning electron micrographs. Close-up (a) and large-scale (b) electron micro-
graph of three fabricated microspheres of differing stem length, held in place via UV-curing
adhesive. The upper device was employed in the experiments. The white coloration in the UV
glue is an artefact due to charging in the scanning electron microscope.

optical cavity angular resonance frequency shift per unit deposited superfluid film thickness on
the resonator surface (40). Microsphere resonators support a wide variety of WGM resonances
described by their radial, polar and azimuthal mode numbers along with their (TE or TM)
polarization (62). However all these resonances have here a similar coupling strength G (see
section [2.5)), such that specific identification of the tracked WGM is not required.

An additional means to determine the film thickness is available for saturated films, as used
in these experiments. As described above, the film is formed and thickened by injecting con-
trolled volumes of “He gas into the sample chamber via a capillary. After a certain volume, any
additional injected *He gas leaves the WGM resonance frequencies essentially unaffected. This
corresponds to the regime of saturated film (34, 63), which differs from the unsaturated regime
of our previous works (27, 28, 32). At this point the helium pressure in the chamber is equal to
the saturated vapor pressure pg, and any additional helium gas liquefies into a superfluid reser-
voir at the lowest point of the sample chamber. In this saturated regime, the film thickness is
solely determined by the height z between the microsphere and the reservoir, and can be ob-

tained by equating the van der Waals and gravitational chemical potentials p,qw = =55 and




Herav = g%, yielding (34):
dy = ¢ Qvdw
gz

(1

Here oryqw = 2.6x 1072 m®s~2 is the van der Waals coefficient for silica (40) and g = 9.8 m.s~2

the gravitational acceleration. The latter method is for our system the most precise technique to

determine the film thickness.

* The sphere is held at a height z = 2cm +/- 1 mm above the lowest point in the sample
chamber. In the saturated regime, Eq. predicts a film thickness of dy = 23.7nm +/-

0.4 nm.

* Using the WGM shift to determine the superfluid film thickness was less precise in these
experiments. We observed an optical mode shift of 29 pm after a first helium injection.
Using an optomechanical coupling rate G /27 = 0.2 GHz/nm (see section this optical
shift corresponds to a film thickness dy = 18nm. Several days later we added more
helium in order to better approach the experimental set-point shown in Fig. 2 of the
main text and observed a mechanical mode frequency shift of 13 Hz, which suggest an
additional film thickness of 2-3 nm, adding up to a total film thickness of ~ 21 nm. Since
these measurements were done over several days and combine two different techniques,

this value has a larger uncertainty.

* A third option to determine the film thickness is using the eigenmode simulations in
COMSOL. This is achieved by fitting the measured experimental frequency of the funda-
mental third sound mode (72 Hz), using the film thickness as fit parameter. This method
leads to an estimated film thickness of ~27 nm. This value has an uncertainty of around
3 nm, due to uncertainties in the exact length of the stem which defines the fundamental

third sound mode (see section [2.3). The glue with which the stem is glued to the holder



could affect the length of the stem. A deviation of 400 ;m could lead to a film thickness

of 24 nm with matching frequency of 72 Hz.

Based on these calculations, we determine the superfluid film thickness to be 24 nm +/-

3 nm, which is within the error bars and agrees with all three thickness estimation methods.

2.3 Calculation of the third sound modes of the microsphere resonator

Previous experimental work with superfluid third sound resonators mainly employed disk-
shaped resonators (27-29, 38, 39), for which analytical expressions (in the form of Bessel
modes) exist for the third-sound resonances. While similar expressions exist for spheres (spher-
ical harmonics), none naturally exist for the sound modes confined to the 2D outer surface
of an arbitrary 3D geometry, such as the silica microsphere resonator including its supporting
stem shown in the SEM micrograph in Fig. 3(a) of the main text. To address this, we note
that the superfluid helium flow in the third sound wave is considered inviscid, irrotational and
incompressible. (Indeed, while superfluid helium is in fact quite compressible (64-66) (with
a bulk modulus of approximately 8 MPa compared to 2 GPa for water), the van der Waals
pressure exerted on the superfluid helium’s film free surface (typically in the kPa range for the
film thicknesses considered here (29)) is approximately three orders of magnitude lower than
helium’s bulk modulus. As a consequence, any local influx of superfluid predominantly leads
to a thickening of the film and not an increase in density, such that the superfluid may be well
approximated as incompressible in the third sound wave). As such it is a potential flow and, in
the limit of small wave amplitude, the out-of-plane deflection of the superfluid surface 7 (7, t)

obeys the simple wave equation:

2
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Here c is the speed of sound, which neglecting the influence of surface tension, takes the form
c3 = 4 /3”—;“3% (40). Assuming a separable time-harmonic standing wave solution, of the kind

n (7,t) = n (7) e*¥, leads to the Helmholtz equation for the spatial mode profile 7(7):
(V2 + k%) n(7) =0, (3)

where k% = 53—22 and the displacement profile 7(7) is defined on the (2D) surface of the (3D)
resonator geometry. When the resonator is a sphere of radius R, the third sound modes are given
by the eigenfunctions of the angular part of the Laplacian operator A = V2, called the spherical
harmonic functions Y,! (6, ¢) of degree | and order m, with eigenvalue k? = (I + 1)/R? and
frequency:

c/U(1+1)

Q:kc:—R . 4)

Similarly, the third sound modes confined to the surface of an arbitrary three dimensional
geometry may be obtained through solving the Helmholtz equation on the exterior 2D surface
of this 3D geometry with the help of finite element modelling software (Comsol Multiphysics).
We use this technique to obtain the modes of oscillation of a superfluid film confined to the
surface of a silica microsphere whispering gallery mode resonator, including its supporting
stem.

Three such resonators, of differing stem length [, are shown in the top panel of Fig. [S2]a),
protruding from the sample holder in order to allow optical access through a tapered fiber (see
bottom panel). Fig. [S2|b) shows the fundamental mode of oscillation of a superfluid film con-
fined to the surface of such a silica microsphere resonator. Acoustic confinement is provided
by the large change in acoustic impedance at the contact point to the sample holder due to the
rapid change in cross-sectional area, much like in a Helmholtz resonator (67). This is evidenced
by the fact that the obtained resonance frequency 2, /27 =~ 86 Hz for a 24 nanometer thick

film—which reasonably closely matches that observed in the experiments—is essentially inde-
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Figure S2: Silica microsphere resonators. (a) Top: three microspheres of varying diameter
and stem length imaged through the sample chamber window. Bottom: image of the silica
microsphere and the coupling tapered fiber, measured at cryogenic temperature with a long
working distance microscope objective. (b) Fundamental third sound eigenmode localized to
the fiber stem, obtained through finite element simulations. The rapid enlargement of the cross-
section represents the point at which the fiber stem is glued to the sample holder. Inset shows
how the fluid motion alternatively thins (and thickens) the film around the tip of the sphere. (c)
Higher order third sound excitations of the fiber stem and microsphere. (d) Third sound modes
localized to the microsphere tip, closely resembling the Y* (0, ¢) and Y2 (6, ¢) eigenmodes of
an ideal sphere.



pendent of the choice of fixed (Dirichlet) or free (von Neumann) boundary condition at the edge
of the simulation domain (40). For this fundamental acoustic resonance, superfluid oscillates
back and forth between the surrounding bath and the tip of the sphere, thereby efficiently mod-
ulating the whispering gallery mode optical path-length, as shown in the inset of Fig. [S2|b).
Higher order excitations of the stem and sphere are displayed in Fig. [S2|(c).

This acoustic confinement through impedance mismatch is also at play at the level of the
thin neck which joins the silica microsphere to the silica fiber stem. This results in (higher
frequency) third sound modes localized on the spherical tip, as shown in Fig. [S2[(d), with mode
profiles and eigenfrequencies closely matching those given by the spherical harmonic functions

Y! (6, ¢) describing the eigenmodes of a perfect sphere (see section below).
Sphere modes

In addition to the fundamental stem mode discussed in the main text, we observe a number of
high-frequency modes consistent with third sound modes localized on the microsphere itself.
Fig. [S3] shows a representative spectrum, acquired with a film thickness of ~ 7.5 nm. A
number of third sound modes are visible with frequencies ranging from tens to hundreds of
kHz and Q factors in the 10* range. These modes can be brought into regenerative oscillation
with nanowatts of optical power. Which particular mode experiences dynamical backaction is
strongly dependent on laser-cavity detuning. Fig. [S3(b) records the frequencies of the third
sound modes which could be brought into lasing during an experimental run. Both their density
and frequency are consistent with spherical harmonics Y. of an ideal sphere (pink bands, where
[ is incremented from 1 to 13). More precise mode identification was not performed here, as
identifying the mode frequency provides information only on the degree [ (see Eq. M), and
spherical harmonics of degree [ have 2/4-1 degeneracy (the order m can take integer values from

—I to [). This is illustrated in the inset of Fig. [S3(b), which displays the analytical spherical
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Figure S3: Third sound modes localized on the microsphere. (a) Power spectrum showing a
number of high-frequency third sound modes, acquired with a film thickness of approximately
7.5nm. (b) Matching of experimentally observed lasing modes (blue dots) to frequency of
spherical harmonics Y,/ of an ideal sphere (see Eq. ), (width of band 2 kHz).

harmonic modes of an ideal sphere Y,! (6, ¢), along with the corresponding eigenmodes of the

sphere with stem obtained through finite element simulation (negative values of m which rotate

the eigenmode are not shown here).

2.4 Acoustic losses

2.4.1 Measurement of acoustic losses in the weakly pumped thermal Brownian motion
regime

The intrinsic acoustic linewidth of the superfluid stem mode I' is obtained by fitting the exper-

imentally measured power spectral density below the threshold for regenerative oscillation, in

the weakly pumped thermal Brownian motion regime. An example of this, measured with an

incident power of 680 fW, is shown in Fig. [S4 Accounting for the experimental uncertainty,
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Figure S4: Measurement of the stem mode acoustic linewidth. Power spectral density (PSD)
of the fundamental stem mode measured at an input power of 680 fW (blue), along with a
lorentzian fit to the data (dashed red line). Accounting for uncertainty across repeated measure-
ments, we extract an intrinsic damping rate I'/27 = 1.3 + 0.2 Hz.

we extract an intrinsic loss rate I'/27m = 1.3 + 0.2 Hz. As this value is close to the 1 Hz resolu-

tion bandwidth of our spectrum analyzer (Agilent N9010 EXA) , we corroborate it through an

analysis of the superfluid acoustic losses in the following section.
2.4.2 Modelling the superfluid acoustic losses

In this section, we evaluate the acoustic losses of the superfluid stem mode discussed in the
main text. We start by estimating the radiation-limit quality factor (),.q. As mentioned above,
acoustic confinement is provided by the large change in acoustic impedance at the contact point
to the sample holder due to the rapid change in cross-sectional area, as illustrated in Fig. [ST]
This impedance mismatch reflects incoming superfluid waves, confining acoustic energy within
the superfluid resonator. Since the contrast in acoustic impedances is finite, this reflection is
only partial, and acoustic energy escapes the resonator, leading to acoustic losses, which play

here the role of clamping losses in anchored mechanical resonators (68). These can be estimated



in a similar fashion to acoustic Helmholtz resonators in air (69).
To do this, we consider the superfluid wave shown in Fig.|S5|(a), where the amplitude 7(z, t)
takes the form 1 = 7y cos(wt — kz). The energy per unit area carried by the wave under the

form of kinetic and potential energy takes the form (70):

1

E = Spuegeaw m, (5)

in the limit of small amplitude. This result is identical to gravity waves, but the gravitational
acceleration g has been replaced by the van der Waals acceleration of the substrate g.qw =
‘%‘C}%. (We note that with our parameters ¢yqw ~ 2 x 107 m-s~2 > g, which explains why
gravity can be neglected in our experiments.) The power carried by the wave per unit length is
given by E times the group velocity of the wave v,. Third sound waves in superfluid helium are

deep into the dispersionless shallow water wave limit (dp/\ ~ 10~ here), such that v, = v, =

cs. The power carried by the wave is thus:

1
P = Fv, = §pH6gvdw 77303 (6)

Figure |S5|shows the normalized wave amplitude eigenmode profile obtained through finite
element modelling as detailed in section[2.3] The amplitude is plotted as a function the the arc
length highlighted in the inset, where the ‘0’ coordinate corresponds to the tip of the micro-
sphere. Due to the finite impedance mismatch there is a finite motion of the superfluid film at
the level of the ‘neck’ of the superfluid Helmholtz resonator, materialized by the red dot. This
launches a wave with power % PHeGvdw Tac3 into the environment. The radiative quality factor
Qraq 1s defined as 27 times the ratio between the total energy stored in the system W and the

radiative energy lost during one cycle of oscillation at resonance AW, .q (68):

w

rad — 2
Q d : AVI/vrad

(7)
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Figure S5: Modelling the superfluid acoustic losses. (a) Cross-section of a superfluid third
sound wave, showing the wave amplitude 7y and the phase/group velocity c;. The power P per
unit length (along the ¢ direction) carried by the wave through the dashed black line is given by
(). (b) Finite element simulation of the stem mode normalized displacement (see Fig. [S2(b)),
with the displacement at the level of the ‘neck’ of the resonator highlighted by the red circle.

Substituting into (7) the values of TV and W,,4 obtained through Egs.(5)) and (6], we get:

27 f JJyes °(7) dA
C3 fcirc. 772 (7?) dl ’

where the numerator integral is carried over surface area of the resonator (silica sphere+stem),

Qrad = (8)

while the denominator integral is carried over the circumference of the neck of the resonator
through which power flows into the environment. Using the results of the finite element mod-
elling, Eq. provides an estimate for the radiative decay rate I',,q = €2/Qraq. We find
[yaa/2m = 1.5 Hz.

Unambiguous identification of all damping mechanisms in third sound remains an open
problem in the field. The main known dissipation channels include thermal dissipation arising
due to the temperature gradient between the peaks and troughs of the sound wave, dissipation
due to interactions with pinned vortices, and radiation losses (77). The total quality factor Q) is
then related to the individual quality factors by Qi = Q;aé + Q;t}ler. Given the over two orders
of magnitude larger Q factors measured on the sphere modes, which are better confined to the
extremity of the microsphere (see section [2.3)), it is reasonable to assume that radiative losses

are the dominant source of loss for the stem mode, such that I',,q >~ I'(y, in good agreement



with the experimentally measured values discussed in the previous section.

2.5 Calculation of effective mass, coupling rate and thermal conductance

Optomechanical coupling G

Calculating the optomechanical coupling G requires identification of the employed WGM in
order to compute its field overlap with the superfluid coating the resonator (40). However,
microspheres have a very dense whispering gallery mode spectrum, with WGMs differing by
their radial, polar and azimuthal mode orders (n, [ and m respectively), along with their TE
or TM polarization (62), as illustrated in Fig. [S6(a). This large WGM mode density makes
it difficult to identify the mode used in the experiments. Fortunately, changes in the WGM
order have only a modest influence on the coupling strength, with a < 1% change arising from
incrementing the radial or polar order beyond the fundamental mode (see Fig. [S6(a)).

A larger difference, on the order of 5%, arises between TE and TM polarizations. Indeed,
the WGMs with a dominant radial E field component have a larger field at the surface due to the
orthogonal E field discontinuity at the silica interface (40). Calculation for 100 WGMs closest
in resonance wavelength to 1550 nm shows that their G is bounded between 1.9 x 10! and
2.1 x 10'7 Hz/m, allowing us to constrain the uncertainty to within ~10%. These calculated

values are in good agreement with the analytical expression for a circular WGM resonator

G = —*2 (72), corrected for the lower dielectric permittivity of superfluid helium (40):
0wy wo [ 1 —eg
G=—FF>2—F5|— 9
ox R (1 — E€8i0s ’ ( )

which predicts G/27 = 1.93 x 10'7 Hz/m for a 55 pum radius sphere. Here e = 1.058 is the
relative permittivity of superfluid helium (73), and g;0, = 2.1 that of silica. We note the value
of G is calculated with a radius of 55 pm, obtained by an optical microscope measurement.
Elsewhere a value of 49.5 ;ym obtained by SEM is used. This discrepancy is due to the oblate

shape of the reflown microsphere.
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Figure S6: Optomechanical coupling and thermal conductance. (a) Whispering gallery
modes of a 55 pm radius microsphere resonator, obtained through finite element simulation.
1) Fundamental radial n = 1 and polar [ = 1 WGM with azimuthal number m = 320 and
resonance wavelength Ag = 1506 nm. Its optomechanical coupling strength calculated through
FEM (40) is G /2 = 1.883 x 10" Hz/m. ii) Higher order polar WGM (n = 1; [ = 2; m = 320),
with optomechanical coupling strength G//27 = 1.889 x 10'” Hz/m. iii) Higher order radial
WGM (n = 2; 1 = 1; m = 320), with G/27 = 1.903 x 10" Hz/m. (b) Calculation of the
thermal conductance of the microsphere resonator. An absorbed power of 1 pW at the level of
the spherical tip leads to a steady-state temperature increase by 0.24 mK, corresponding to a
thermal conductance Gy, = 4.1 x 1072 W/K at a thermal bath temperature of 284 mK. Physical
parameters used in the simulation are summarized in Table



Effective mass

The effective mass of an acoustic mode taken at a reduction point R is obtained by reducing the

system to a point mass m.g moving with velocity v(ﬁ) possessing the same kinetic energy Ej,

as the original system, that is meg = %. For a third sound mode, this takes the form (40):
2F 2 3payawn? (7)d3(7)
Meff = £ ff 2d* ) (10)
(R) PR

where I, = F, is the potential energy stored in the third sound wave, and the integral is taken
over the surface 4 of the resonator. For the fundamental mode of the sphere and stem shown in
Fig. [S2(b), with a reduction point on the equator of the microsphere and a 24 nm film thickness,
meg = 5.1 x 1073 kg. Note that this value is approximately 2 billion times larger than the total
mass of superfluid covering the resonator m = A d py. = 2.65 x 10712 kg. The larger effective
mass arises from the fact we consider here only the out-of-plane displacement 7 of the fluid

interface (which couples to the light), while the majority of the superflow occurs in plane (40).
Radiation pressure Single photon optomechanical coupling rate g, ,

For the low-frequency stem mode shown in Fig. [S2[b), the superfluid displacement is uniform
along the tip of the microsphere where the light is confined, such that the radiation pressure

single photon optomechanical coupling rate gy, is given by (10, 40):

h
meﬁQ ’

90,, = Gy = G (11)

With G/27 = 2 x 10'7 Hz/m (see section[2.3) and m.¢ = 5.1 x 1073 kg (see section 2.5)), this

yields z,,r = 4.8 x 107'® m and go,, /27 = 0.95 Hz.



3 Thermal-electric circuit analogy

The fountain pressure in superfluid helium is given by (33):
Py, = pre Sue(T) AT, (12)

where pyy is the superfluid helium density, Sy.(7") is the temperature-dependent entropy of
helium, and ATy, = Tye — T is the difference between the environment temperature 7" and
the superfluid film covering the resonator at temperature 7y,. When calculating the fountain
pressure force the challenge is to precisely estimate the temperature rise in the superfluid film,
because it strongly depends on the thermal parameters of the system (thermal conductivity,
specific heat, Kapitza resistance, vapor pressure etc), which in turn are all strongly temperature-
dependent. To model this system we use the technique of the thermal-electric analogy.

The thermal-electric analogy as a lumped-element model is a well known approach to anal-
yse and simulate a variety of complex thermal systems (74, 75). Applications of thermal equiv-
alent circuits range from designing heat sinks for semiconductor circuits (76) and understand-
ing the impact of solar radiation on building energy consumption (77) to battery pack thermal
management (78). Here we use the analogy between thermal quantities and electric quantities
(summarized in Table to transform our thermal system into an electric circuit analog. In
figure a) we show a schematic of our thermal system with the equivalent electric quanti-
ties and in b) the electric circuit as an analog representation of our thermal system. The heat
source in our system is the absorbed intracavity optical power in the silica sphere, which is rep-
resented by the current source /,;, in the circuit. There are two paths for the heat flow towards
the thermal bath (dark grey). First it can flow through the substrate itself, i.e. the silica stem
which is thermally anchored to the cryostat (beige colored area). Second it may flow through
the silica/superfluid interface (striped line) with interfacial resistance Ry into the superfluid

helium (light blue color) and dissipate via evaporation. Because the heat can dissipate through
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Figure S7: Electric-thermal analogy scheme. a) shows the schematic of our thermal system
with the analog electric quantities. The analogy for the heat source (absorbed intra cavity power)
is a current source Iji,: and the electric ground represents the thermal bath of the system. b)
Electric circuit analogy of our thermal system. The voltages V,, and V. are the analogs of the
temperatures in the substrate and the superfluid film.




electric \ thermal \ superfluid mass flow

charge ¢[A - 5] heat Q[J] mass m/[kg]|
current /[A] heat flow rate Q[IV] mass flow rate m[kg/s]
voltage V[V] temperature 7' K| chemical potential x[.J/kg]
resistance R[V/A] heat resistance Ry, [K /W] -

capacitance C[A - s/V] | heat capacitance Cy,[J/K] | mass capacitance Cy, = dm/du[1/J]
inductance L[H] mass inductance L, [m?/kg]

I =AV/R Q = AT/Ru, -

I =Cdv/dt Q = CydT/dt 1 = Cdp/dt
Kirchoff’s current law | first law of thermodynamics law of conservation of mass

Table S1: Electric, thermal and superfluid mass flow analog quantities.

both paths simultaneously, these are arranged in parallel in the electric circuit. The two main
quantities we are interested in are the temperature changes in the substrate AT}, and in the
superfluid helium thin film A7y, with respect to the thermal bath. These two quantities are
represented by the two thermal potentials (electric analogy: voltage) Vi, and Vi, with respect
to some reference voltage, which is the thermal bath (electric analogy: ground). They depend
on the thermal resistances Ry, capacitance C}y,, thermal bath temperature 7" and heat flow rate
given by the absorb photons, which is the current /,;, in the electric analogy. Knowing these

values, we eventually can calculate the fountain pressure and force.

3.1 Thermal-electric elements of substrate - silica

In a lumped-element model for heat transfer an element with a non-zero heat capacity is is
modeled by two quantities in a parallel configuration: a thermal resistance 2}, 1, and a thermal
capacitance C'y,_qu, Which accounts for the element’s thermal inertia.

The thermal resistance Rg,, can be simulated with COMSOL. All parameters used in this
simulation are provided in Table [S3| and are for the bath temperature of 284 mK. Fig. [S6(b)
shows the steady-state temperature increase in the microsphere plus stem system with Q = 1

pW of optical power absorbed at the level of the microsphere. The 0.24 mK temperature in-



crease corresponds to a thermal resistance Ry,_opn = 2.44 x 10 K/W and a thermal con-
ductance G, _sup = Ryl oy = Fsiosa2samk X ¢ = 4.1 x 1072 W/K, where ksio,ansimk =
1.6 x 1073 W/m/K is the thermal conductivity for silica at 284 mK and ¢ = 2.52 x 10~°m
is a temperature-independent geometrical factor (which we obtain from this simulation). The
thermal conductivity of silica xg;o,(7") is temperature dependent. In figure [S8| a) we fitted a
function of the form kg0, (7) = 0.0000488638 x T + 0.0212904 x T? — 0.00436582 x T —
0.000101651 x T* to the data from (79) to get a temperature-dependent thermal resistance of
the silica microsphere Ry, sub(T) = (Ksio, (T) X ¢) L.

The thermal capacitance of the substrate is given by Cyp,_sup, = Csi0, (1) X Mgyp, With mgy
being the mass of the microsphere (incl. stem) and cgi0,(7) = 0.00105 x T + 0.0018 x T3
is the temperature-dependent specific heat capacity for silica (see figure |S8| b)), which is a fit

function to the data from (80).

3.2 Thermal Kapitza resistance at the interface

The interface between the silica and the superfluid thin-film results in an interfacial thermal
resistance called the Kapitza resistance. It is temperature and material dependent, and arises
due to the large acoustic impedance mismatch between silica and superfluid helium, reducing
phonon propagation from one medium to the other. According to (8/) the Kapitza resistance
has the functional form:

Ri(T) = 15105102y,

- Cla: 9
274 5103 \ 3
27 kBpHecchF(ctSio )T
2

(13)

where psio, and py, are the densities of silica and liquid helium, Ctsio, and Clgio, Are respectively
the transverse and longitudinal sound velocities of silica, c;,,_ is the first sound speed in super-
fluid helium and F'(cig,, /Ctg0,) = 2.5 (81) is a silica specified function. Fig. c) shows the

temperature dependency of the Kapitza resistance for a silica and superfluid helium interface



with units [m*K/W]. When calculating the Kapitza interfacial thermal resistance in our system
Ry, we need to normalize it to the silica microsphere surface area, i.e. Rx(T) = Ry (T)/A

[K/W].

3.3 Thermal-electric elements of superfluid helium He-II

The superfluid helium thin-film is represented by the thermal resistance R.,, and the thermal
capacitance Cy,. In thin superfluid films, the normal fluid component is viscously clamped to
the substrate and does not flow. Only the superfluid component, which carries no entropy, is
free to move. Thermal conductance through the liquid itself is therefore negligible, and the
thermal conductivity occurs primarily through influx of superfluid, which evaporates extracting
the latent heat of vaporization (82). To calculate the thermal conductance G.,,(T) resulting
from this evaporative process at a temperature T, we need to multiply the resulting net helium
mass flow rate per unit area iy, by the latent heat of vaporization of helium L7y and divide
by the temperature change (7 — T'), which gives the area-normalized ‘net’ energy leaving due
to evaporation. Multiplying by the silica microsphere area A gives the total evaporative thermal

conductance of our superfluid film:

LHe (T)

Gvap (T) - mHe m

A. (14)

The net mass flow rate per unit area is given by (25):

. MHe dPy
T) = ) oemet (X T, —T 1
mne(T) =7 2rRT ( dT )V.p.c( 0= 1), (15)

with v = 1, my,_., as the molar mass of helium, R = 8.3145 J mol~! K™! the ideal gas

constant and (%)V_p_c the gradient of the vapour pressure curve for helium. The saturated

vapour pressure Py (T") curve is plotted in Fig. e), and given by (73):

Py(T) = expli, — 22 + 2 log(T)), (16)



Thermal-electric quantity functional form frequency domain

Substrate thermal resistance R, (1) = (ksio, (T)¢) Zr..,(T) = Reup(T)
Substrate thermal capaci- Cyub(T) = ¢si0, () Msub Zc..(Q,T) = m
tance
Kapi . N 3ﬁ3p5i02 C?Sioz -

apiza Resistance Ry (T) ~ TR preery TOA Zx(T) = Rx(T)

—1
Superfluid He thermal resis-  Ryap(T) = <'y R (ddPTY)v_p_CLHe(T)A> ZR
tance

Superfluid He thermal ca- Cue(T) = cue(T)mue Zcw. (Q,T) =
pacitance

(T) = Rvap(T)

vap

1
1Q2CHe (T)

Table S2: Thermal-electric quantities in DC and frequency domain.

where 7o = 12.2440 and Ly = 59.83 J/mol is the latent heat of vaporization at absolute zero.
The temperature-dependent latent heat of vaporization of helium Ly.(7") is an interpolation
function, shown in Fig. f), to the data extracted from (73). The equations [141516| all
together enable us to derive a temperature-dependent expression for the thermal resistance via
evaporation Ry, (T) = (Gyap(T)) .

The temperature-dependent heat capacity of thin-film superfluid helium is given by Cy.(T) =
cie(T)mpe, With my, being the superfluid helium mass covering the full microsphere (incl.
stem) and cy.(7") an interpolation of the temperature-dependent specific heat for superfluid he-

lium, with data obtained from (73) and shown in figure [S§|d).

3.4 Transfer-function for the superfluid helium temperature Vi, (2, T)

Having specified the electric analog of each thermal quantity in our system (see sections above)
and simplified it to an electric circuit (see figure[S7), enables us now to use simple electric cal-
culation techniques to determine the bath-temperature dependent superfluid helium temperature
Vie (€2, T') and its frequency response (transfer-function) to a fluctuating heat source. This gives
us a full framework of our system so we can operate at the ideal temperature and frequency to
maximise and control the fountain pressure backaction.

First we transform all thermal-electric quantities into the frequency domain, so they can
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Figure S8: Temperature-dependent material parameters. Here we present all the
temperature-dependent material parameters used for the thermal-electric analogy model. a)
Fitted thermal conductivity kgio,(7") of silica with data points taken from literature (79). b)
Fitted specific heat capacity cgio,(7") with measured data from (80). c) Kapitza resistance of
the interface between liquid He-II and silica (87). The figures d),e) and f) are all helium-related
parameters. In d), we show the interpolated the specific heat capacity of helium cy.(7") obtained
from the data in Ref. (73). e) plots the vapour pressure for helium, which is given in Ref. (73)
in functional form (Eq.[16). In f) Ly (T') is the interpolation of the data for the latent heat of
vaporization (73).



be written as complex impedances, which are all summarized in table [S2] The total complex

impedance for the substrate and superfluid helium are respectively given by:

~ 1 1 h
Zon(2,T) = 7 v
5ub( 9 ) (ZRsub (T) + ZCsub (97 T)) ( )
and
~ 1 1 B
Gt = ] . 18
H ( ) (ZRvap (T) + ZCHe (Q,T)) ( )

The combined impedance of superfluid helium and the Kapitza impedance is ZKHQ(Q, T) =
Z1e(Q,T) + Zx(T), as these two elements are in series, see Fig. This leads to the total

impedance of the circuit:

. 1 1 -1
Z(UT) = [ = _ . 1
(4 T) (Zsub(Q,T) " ZKHe(sz,T>) (1%

Therefore the voltage change (thermal realm: temperature) in the substrate is given by
Ohm’s law:

Vo (0, T) = pthot(QaT)' (20)

Considering the temperature drop over the Kapitza resistance, the temperature difference in the

superfluid helium can be written as:
Vite (2. T) = Vo (2, T) — Vi(T)
3 3 (21)
= IpnZot (S0, T) — Txue (2, T) Zx (T).
The heat flow rate (electric-analogy: current) towards the superfluid helium I kue(2,T') is given

by Kirchhoff’s law as:

fKHe(QaT) = Ipn — Laun(Q,T), (22)
Using equations , and the relation isub(Q, T) = ~sub(Q, T)/ Zsub(Q, T) in equation
(21), results in:

) . I Zo 0T
Vie(Q, 1) = Iph Ziot (2, T) — <Iph - %) Z(t) (23)

Zk(T) Zio (0, T)
Zoun(Q,T) '

= I (th(Q,T)—ZK(T)Jr -
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Figure S9: Modelled transfer functions of the experimental system. In all figures the red dot
represents the operation point of the experimental system. Figure a) shows a contour-color plot
of the superfluid helium temperature increase ATy.(2,7") and its dependency on the thermal
bath temperature 7" and the modulation frequency (2. b) is a line plot of ATy.(2y, T') at the
experimental mechanical frequency (2y;. Figure c) shows the interpolation function Sy.(7")
along with the data of entropy of superfluid helium from (73). d) plots the superfluid helium
fountain pressure Py, (€25, 7). e) is a contour-color plot of the dynamical backaction function
Xue(€2, T') and f) is a 2D plot of the same function at the given bath temperature 7" = 284 mK.



The voltage here is a complex number. The real temperature increase in the superfluid helium

film and the substrate are given by the modulus of the voltage:
ATie(Q,T) = Vige(, T) = |[Vire(Q, 7)) (24)

and

Ajvsub(Qu T) - ‘/sub(QvT) = |‘/sub<Qa T)’ (25)

Fig. [S9|(a) and (b) demonstrate ATy,(€2, T') and its dependency on the bath temperature 7" and
the drive frequency €2 for an absorbed power of I,, = 1pW, where the red dot displays the
operation point of our experimental system. Together with the temperature dependent entropy
Sue(T'), which is given by an interpolation to some measured data from (73) (see figure|S9|c)),

the fountain pressure takes the form:
pr(Qa T) = PHe SHe(T) AT‘He(gza T)a (26)

and is plotted in figure [S9|d) for the experimental mechanical frequency €2y;. This model shows
that our operation temperature of 7' = 284 mK is the optimal temperature that results in the
maximum fountain pressure for our system. This maximum arises as a consequence of two
competing trends. On one hand, the entropy is an increasing function of T, pointing towards
a stronger fountain pressure interaction at higher temperatures (Fig/S9%). On the other hand,
the increase in heat capacity and thermal conductivity at higher temperatures reduces the tem-
perature rise AT, counteracting the previous effect (Fig[S9b). The fountain pressure force is
finally:

Fio (2, T) = P (2, T) A, (27)

with A being the surface area of the whole resonator.



3.5 Thermal response time

In addition to maximising ATy.(€2, T') to optimise the fountain pressure strength, it is also
important to understand and optimize the dynamical backaction efficiency of the system. The
theory of photothermal heating and cooling (77, 20) shows that strongest backaction is achieved
in the regime €2y 7y, ~ 1, where 7y, corresponds to the thermal response time of the superfluid
film. The thermal time delay 7y, is given by the relation 7, = ¢/, with Q the mechanical

frequency and ¢ the phase of the complex transfer function f/He(Q, T):
¢He(Qv T) = arg(VHe(Qv T))? (28)

which means that 7y, is frequency- and temperature-dependent. The unitless functional form:

O ((9Q,T))
L+ (Qmn((2,7)))%

Xue(,T) = (29)

represents the optimal time delay of the bolometric forces (16—19). For Q7 ~ 1 we get
Xue(Q2 = 1/7n, T) = 0.5. Fig. e) shows xue (€2, T') in a color-contour plot for our system.
Fig. [S9(f) is a line cut through (e) for a fixed temperature of 284 mK. The red dot marks the
mechanical mode frequency €2y of the system, which is at the maximum value of 0.5 for ype.
As a consequence, our choice of superfluid mechanical mode and cryostat temperature allows
us to operate at both the optimal point for fountain pressure strength (Fig[S9d), and optimal

time-delayed forcing for dynamical backaction (Fig[S9f).

3.6 Figure of merit - fountain pressure dynamical backaction optimiza-
tion
The two main dynamical forces in our system are the fountain pressure force and the radiation

pressure force given by:

Frad = ncavaa (30)
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Figure S10: Temperature ratio and thermal response time of superfluid helium and the
substrate. At the frequency and temperature used in the experiments (red dot), the temperature
of the film closely tracks that of the underlying silica resonator, allowing these to be modelled
as a common element in the ODE simulations of section @l

where n.,, is the intracavity photon number, / the reduced Planck constant and G the optome-
chanical coupling rate. Having the two forces, fountain pressure force and radiation pressure
force, and the dynamical backaction efficiency xp. (2, T') leads to a figure of merit for the pho-

tothermal effect in our system:

Feo (S, T)

ful@.T) = =2

Xue(§2,T). €1y

4 Numerical model

Differential equations

The dynamical behaviour of the superfluid resonator may be described by three coupled dif-
ferential equations relating to the intracavity photon number 7.,,, the change in mean film
thickness at the level of the WGM z and the temperature 7'. Each of these parameters respec-
tively responds on a characteristic timescale of 1/x ~ ns; 7, ~ ms and 1/I" ~ s. Since the

optical decay rate ~ is much larger than all other decay rates, we consider that the intracavity



photon number n.,, reacts instantaneously to any changes in the cavity (adiabatic limit), such

that it takes the steady-state form (/1):

|a|2 —n o Rex P
cav AZ 4 (g)g thy

(32)

where Kk = Koy + K; 18 the sum of the extrinsic and intrinsic loss rates respectively (//), and P

the laser power at the level of the fiber taper. The detuning A is equal to:

A=Ay+ Gz with G:%, (33)
T

with A the cavity detuning for zero displacement and GG the optomechanical coupling rate (see
section [2.5). The dynamics can thus be reduced to two coupled equations of motion. The first

determines the motion of the superfluid film:
Mot & + Mot L&+ meg V2w = Fry = pS(To) (T — Tp) A, (34)

where Ty and T are respectively the temperature of the environment and that of the superfluid
film covering the resonator. This equation, which assumes a constant value for the entropy
S(Tp) is valid in the limit AT < T, which is the case in the experiments. The second governs

the evolution of the temperature 7" and arises from conservation of energy:

Necav th R Qlabs _ Gth(TO) (T - TO)
mc mc

T = (35)

Here, a.hs € [0, 1] corresponds to the fraction of the intrinsic losses dissipated as heat in
the resonator, m to the resonator’s thermal mass and c its specific heat capacity, and Gy, = %
the resonator’s thermal conductance. We note here that at the operational point used in the ex-
periments (2/2r = 72 Hz; T = 284 mK) and the low optical powers in the pW range, the
superfluid film temperature closely tracks that of the silica microsphere with minimal temper-

ature difference and phase lag (verified through the thermal model of section 3] and plotted in

Fig.[S10). For this reason, in these time-domain numerical simulations, we simplify the thermal



system by considering the silica resonator and superfluid film as a common element, of mass
m and heat capacity ¢, dominated by the microsphere mass and heat capacity. This allows us
to accurately reproduce the experimental results, as shown below. The time dynamics of our
system are obtained by numerically solving the coupled differential equations (Eqs (34) and

(33)) with an ODE solver (MATLAB software).

Numerical simulations results

Solving these equations with the parameters provided in Table we obtain the dynami-
cal behaviour of the superfluid film displacement Az(¢), normalized optical output power
|dout ()2 /|ain|?* (Where |aoy (t)]? and |a;, (t)|? are respectively the output and input optical pow-
ers, and are related via input-output formalism (//, 83)) and the temperature fluctuations AT'(t)
around the environment temperature of 7' = 284 mK. The sub-figures ¢), d) and e) in figures

ST1}, [S12] and [ST3| show the time-dependency of these parameters in the steady-state phonon

lasing regime (i.e. after the initial transient dynamics) at the input powers 3.4 pW, 6.8 pW and
68 pW. The simulations are performed at a cavity detuning where the superfluid film’s mo-
tional amplitude is maximized (represented by the red dot in sub-figure a)). To appropriately
compare the numerical simulations with the measurements, done with a spectrum analyzer and
with a heterodyne detection scheme, we added an optical local oscillator field and applied a
Fourier transformation to the time-dependent normalized optical output field in the steady state
regime of the system for different cavity detunings and optical input powers. The black line in

all sub-figures a) of figures [ST1] [S12] and [ST3| demonstrates the peak value of the fundamental

mechanical mode in the normalized spectral density versus cavity detuning for different input
powers. This we compared to the normalized amplitudes of the measured mechanical mode at
different cavity detunings as well and same input powers, which are displayed as blue dots in

all sub-figures a) of figures [ST1} [ST2]and [ST3] The numerical simulation is fitted to the experi-
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Figure S11: Numerical simulation for 3.4 pW input power. a) Mechanical mode (2/27 =
72 Hz) amplitude as a function of cavity detuning, where the blue dots represent the normalized
measured mode peak of the power spectrum and the black line the numerical simulations. b)
Normalized optical transmission of the whispering gallery mode resonator depending on the
detuning, obtained by plotting the experimentally measured normalized spectral density peak
value of the calibration peak at 180 Hz (blue dots) and the local oscillators (80 MHz) normalized
spectral density peak value in the numerical simulations (black line). The numerical simulations
in ¢), d) and e) show the time dependency in the steady state regime of respectively the displace-
ment A X, the cavity transmitted normalized optical power and the temperature fluctuation AT
around 7y = 284 mK. These simulations are performed at the detuning represented by the red
dot in a) and b).
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Figure S12: Numerical simulation for 6.8 pW input power. a) Mechanical mode (2/27 =
72 Hz) amplitude as a function of cavity detuning, where the blue dots represent the normal-
ized measured mode peak of the power spectrum and the black line the numerical simulations.
b) Transmitted optical power from of the whispering gallery mode depending on the detuning,
obtained by plotting the experimentally measured normalized spectral density peak value of the
calibration peak at 180 Hz (blue dots) and the local oscillators (80 MHz) normalized spectral
density peak value in the numerical simulations (black line). The numerical simulations in c),
d) and e) show the time dependency in the steady-state regime of respectively the displace-
ment A X, the cavity transmitted normalized optical power and the temperature fluctuation AT’

around 7y = 284 mK. These simulations are performed at the detuning represented by the red
dot in a) and b).
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Figure S13: Numerical simulation for 68 pW input power. a) shows the mechanical mode
(/27 = 72 Hz) amplitude depending on the cavity detuning, where the blue dots represent
the normalized measured mode peak of the power spectrum and the black line the numeri-
cal simulations. b) Normalized optical transmission of the whispering gallery mode resonator
as a function of detuning, obtained by plotting the experimentally measured normalized spec-
tral density peak value of the calibration peak at 180 Hz (blue dots) and the local oscillators
(80 MHz) normalized spectral density peak value in the numerical simulations (black line). At
this high power, the D fountain pressure force causes the superfluid film to thicken, which leads
to an optical resonance shift of 19.6 MHz. The numerical simulations in c¢), d) and e) show
the time dependency in the steady state regime of respectively the displacement Az, the cavity
transmitted normalized optical power and the temperature fluctuation A7 around 7 = 284 mK.
These simulations are performed at the detuning represented by the red dot in a) and b).



mental data by using s, the fraction of dissipated optical power that gets converted into heat
in the resonator, and the mechanical mode decay rate I as fitting parameters. The best results
could be obtained with a,1s = 0.35 and I" being 1 Hz, 1.5 Hz and 5 Hz respectively for the input
powers 3.4 pW, 6.8 pW and 68 pW, pointing towards an increase in the intrinsic damping rate
with laser power. Such nonlinear damping has already been reported in the context of super-
fluid helium films (84), as well as silicon optomechanical crystals (22). In addition to the strong
dynamical back action, induced by the photo thermal effect, we observe a static photothermal
effect in the simulations as well. As explained in the main text, this static effect is caused by the
rise of the mean temperature of the superfluid film. In sub-figure e) of the figures [STI] [ST2]and
S13|it is shown that the mean temperature rises by about 0.2 mK, 0.37 mK and 3.6 mK respec-
tively for the input powers 3.4 pW, 6.8 pW and 68 pW. This increase in temperature causes the
superfluid film to thicken, shifting the optical mode. For the input power of 68 pW the optical
mode is shifted by 19.6 MHz, corresponding to an optical tunability of 288 GHz/uW, as shown
in Fig. [ST3[(b). This DC thicknening of the film is also apparent in Fig. [S13|c), which shows
the superfluid film oscillations around a new, thicker equilibrium position.

We note that the simplified equation solved for the mechanical oscillator Eq. only in-
cludes a viscous damping term and a driving force through the fountain pressure interaction. It
does not include a thermal Langevin force, and as such the only steady-state endpoints of the
simulation correspond to a large motional amplitude if the optomechanical gain exceeds the in-
trinsic losses of the resonator, or zero motional amplitude if the optomechanical gain is less than
the resonator losses, as is the case for a red-detuned laser beam (/7). In contrast, the collected
experimental data is sensitive to the thermal Brownian motion of the oscillator, accounting for
the discrepancy between simulation and experimental data visible for negative (i.e. red) detun-

ing in Fig. a) and Fig. a). This discrepancy becomes proportionally smaller at higher

optical powers (Fig. [ST3|a)).



Parameter Symbol Value Unit Source

WGM intrinsic energy decay — k; /271 15 MHz measurement

rate

WGM extrinsic energy decay — Key /27 15 MHz measurement

rate

Third sound mode frequency  €2,/27 72 Hz measurement
86 Hz FEM

Third sound mode effective Mg 5.1x 1073 kg FEM

mass

Third sound mode decay rate r 2 x 1 Hz measurement

Optomechanical coupling G/27 0.2£0.01 GHz/nm FEM

strength

Single photon optomechani-  go/27 0.7 Hz FEM

cal coupling rate

Microsphere radius R 49.5 pm SEM

Mean superfluid film thick- dy 24 nm measurement

ness

Superfluid He density PHe 145 kg/m? (73)

First sound speed in super- ¢y, 236 m/s (85)

fluid helium

superfluid  helium  mass  mp.  2.65 x 10712 kg FEM

(covering the total micro-

sphere+stem)

Silica density £S04 2200 kg/m? (86)

Silica thermal conductivity — kgio, 1.6 x 1073 W/m/K (87)

(@284 mK)

Silica specific heat capacity  cgio, 34x107* Jkg'K! (34)

(@284 mK)

Thermal conductance Gip_sup 4.1 x 1077 W/K FEM

(@284mK)

Silica microsphere area (incl. A 7.7 %1077 m? SEM

stem)

Silica  microsphere mass  Mmgup 4.9 % 1078 kg FEM

(incl. stem)

Longitudinal sound velocity ¢, 5968 m/s (88)

of silica

Transverse sound velocity of ¢y, 3764 m/s (88)

silica

Thermal response time Téh 5.7 ms FEM

He II entropy per unit mass S 0.16 J/kg/K (73)

(@284 mK)

fraction of k; dissipated as Qlabs 0.35 - fit

heat

Operating temperature T 284 mK measurement

Table S3: Physical parameters used in the simulation. FEM:Finite Element modelling. SEM:
Scanning electron microscope.



S Lasing thresholds for various systems

We benchmark our phonon lasing threshold against existing literature in Fig. 5 of the main text
and Fig.[ST4] We condensed the amount of systems shown in Fig. 5 and Fig.[ST4Jto 18 different
experiments, which are representative for the majority of phonon lasing systems and driving
mechanisms (radiation pressure, electrostriction, photothermal and electrothermal interactions).
All literature references that have been used for Fig. 5 are listed in Table [S4] We additionally
plot the phonon lasing thresholds of these same experiments versus resonator spring constant
and resonator mass in Fig. [ST4 We choose to focus our benchmark on the threshold power
Pinresn, 1.€., the incident optical power, (and not on the intracavity photon number at threshold
Neavthresh) @S this is the value which is most widely reported in the literature. The conversion

between the two is given by (/7):

n Kex thesh
cav thresh — 2 )
A+ (k/2)" hw

(36)

where ke, and A are respectively the extrinsic coupling rate of the cavity and the laser-cavity
detuning and kK = Ko + Kex 1S the total cavity loss rate, corresponding to the sum of intrinsic
and extrinsic loss rates. Systems in the good-cavity limit (2 > k) can achieve phonon lasing at
comparatively lower intracavity photon number (22), as the optical to mechanical energy con-
version efficiency per intracavity photon is high. However the overall efficiency per launched
laser photon is limited by the lower rate at which photons enter the cavity in the good cavity

limit, when the laser is highly detuned from the cavity resonance (/7).

6 Thermodynamic efficiency

The thermodynamic efficiency is estimated by multiplying the stored mechanical power with

the mechanical damping rate, yielding an acoustic power loss Py, Which must be exactly
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Figure S14: Phonon lasing thresholds of different optomechanical and electromechanical
experiments. These are plotted versus (a) resonator spring constant and (b) resonator mass.
Details on the reference publication for each point can be found in Table [S4 While Ref. (32)
considered the vibrational mode of silica microtoroid, we have classified it under ‘Superfluid’
as the superfluid helium film coating the device provided enhanced dynamical backaction.

compensated by the optical drive to maintain constant amplitude self-sustained oscillations.
1 2.2
Pmech - §mefo T (37)

Using the values from Table and a displacement amplitude of x = 6 x 107! (obtained
from Fig. , we get Poeen = 1.2 x 10717 W; while the dissipated optical power is given by
Pas = P X aaps = 3.4pW x0.35 = 1.2pW. This results in a thermodynamic efficiency (rate
of conversion of heat into mechanical work) of 7 = Pyeen/Pabs = 1 X 1072,

As a comparison we calculate the thermodynamic efficiency for the carbon nanotube elec-
trothermal system with the closest lasing threshold (~ 5pW) (24). The mechanical power

produced to sustain phonon-lasing is:

1
A =m0 o Thanolnano = 4.3 x 107 W, (38)

mech 2 eff nano*’nano

with the effective mass m2i"® = 2.7 x 107! kg, the mechanical frequency Qpano/(27) =

90 MHz, the displacement x,,,,,, = 4 nm and the mechanical decay rate I',,,,,,/(27) = 10 Hz (24).



The electrical power dissipated as heat required for the production of P} is approximately
P.joc = 5pW. This results in an thermodynamic efficiency for the nanotubes 7,ano = P22 / Pojee =
0.86 x 10~7. This comparison indicates our system is ~ 10? times more thermodynamically

efficient than the nanotube system with the lowest reported lasing threshold, aside from ours.

7 High-amplitude wave regime

Our work provides for the first time the combination of high precision optomechanical read-
out—capable of measuring superfluid waves with sub-monolayer thickness precision and mi-
crometer spatial resolution—with an actuation capability sufficiently strong to reach the highly
nonlinear regime where the wave amplitude becomes comparable to the film thickness. This is
a prerequisite to study the nonlinear fluid dynamics of superfluid helium films, which has been
a longstanding goal in the field (99). An example of the measured power spectral density in this
regime is shown in Fig. It is measured with nanowatts of incident power and a superfluid
film thickness d ~ 8 nm, at which lasing occurs preferentially on the third order stem mode,
as shown in Fig. [ST5| right. More than a hundred higher order harmonics are visible in this
high-amplitude regime, in which we estimate 1 ~ d through the time-domain optical output of

the cavity.

8 Single photon detection

The fountain pressure between a region of the film at temperature T, and a bath at temperature

T} corresponds to

T
Py =p / S(T")dT’ (39)

To

For a small difference in temperature, the fountain pressure is given by (33, 34):

Py, = pSAT (40)
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Figure S15: High-amplitude wave regime. Left: Optical readout of the superfluid’s acoustic
motion performed with a heterodyne detection scheme with a local oscillator field offset by
80 MHz (see Figure 3 of the main text). Right: Finite element modelling of the third-order
stem mode, oscillating at 2.2 kHz. Color represents the superfluid displacement amplitude,
normalized such that max(n) = 1.

At low temperatures, the specific heat of superfluid helium is several orders of magnitude larger
than that of the underlying optical resonator material (e.g. silicon, silica) (/00). For instance, at
250 mK, cye >~ 1000 cgij02. Therefore for miniature optical resonators, where the thickness of
the superfluid film is no longer negligible compared to that of the resonator (consider e.g. a 30
nm thick superfluid film on either side of a 200 nm thick resonator), the entire thermal mass of

the superfluid-covered resonator is dominated by the superfluid film. The temperature increase

for a deposited energy () corresponding to one absorbed photon is therefore given by:

AT = @ _ W 41)

mcge M CHeo

where m is the mass of the superfluid film, and cy, superfluid helium’s specific heat capacity.

Since the superfluid helium entropy takes the form (73):

o CHe
S = / T, (42)



for ¢y, of the form a7,

OZT3 OéT3 CH
S—/—dl —/042 d1 =3 ¥ (43)

(Which is indeed what is measured in practice, see ref. (73)). Using this, we can re-express Eqgs.

and as:
_ pS(T)hw
fo — pVCHe(T) (44)

and obtain a simple, temperature-independent expression for the induced fountain pressure re-

sulting from the absorption of a photon of energy hw:

hw

~ 1 4
fp 3VHe ( 5)

The goal is therefore to minimize the volume of superfluid covering the resonator, which is
attained by reducing the resonator surface area. The above calculation is valid in the regime

where:

* The thermal response time of the resonator is slower than that of the superfluid film (which
is on the order of a few microseconds at the temperatures considered here), allowing the
thermal energy to be transferred to the superfluid film before it is lost to the environment

through the resonator’s own thermal anchoring.

* The thermal Kapitza conductance at the resonator/superfluid interface is well in excess of
the thermal conductance between the helium film and its environment mediated through
the vapor pressure. This allows heat to build up in the superfluid film before it is lost to the
environment through evaporation. This criterion does not depend strongly on the choice
of resonator material as the acoustic impedance mismatch between superfluid helium and
most solids commonly used for optical resonator fabrication (e.g., Silica, Silicon, Gallium
Arsenide) is of comparable magnitude. This condition is valid for temperatures below

~ 300 mK.
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Figure S16: Silicon 1D photonic crystal architecture. Long tethers provide thermal isolation
from the substrate.

An example architecture satisfying the above conditions is shown in Fig. [ST6] It consists
of a suspended 1D silicon optical crystal cavity, of the kind used in Ref. (2). Long and narrow
tethers provide sufficient thermal isolation for the heat resulting from optical absorption to be
predominantly communicated to the superfluid film. Such a resonator has a optomechanical
coupling rate simulated through FEM of G/2r =~ 5 GHz/nm (40), (meaning that a 1 nm
change in thickness of the superfluid film shifts the optical resonance frequency by 5 GHz).
Using Eq. we estimate a thickening of the film on the order of 1 nm is achievable per
absorbed photon, leading to an optical shift well in excess of the optical resonator linewidth

Kk (2).
8.1 Comparison to radiation pressure per photon

We compare the magnitude of the fountain pressure induced by a photon absorption event (Eq.
to the radiation pressure exerted by an intracavity photon. The radiation pressure due to a

single photon acting on an element of the superfluid film —which arises due to the change in



electromagnetic energy density due to the presence of the helium—is given by:
1 2
Prad = 550 (5sf - 1) E s (46)

where the electric field is normalized such that:

% / / / coer(F)E*AV = hw. (47)

Making the (strongly) simplifying assumption that the field be essentially localized within the
optical resonator (of permittivity €,) and of constant magnitude over the mode volume Vi,oqe,
leads to E? ~ hw/(1/2 &0 &, Vinode). Combined with Eq. , this provides an order of magni-

tude estimate of achievable the radiation pressure per photon acting on the superfluid film:

s—1 N
Prpﬁgf W

(48)

Er vmode

Compared to Eq. , we note the presence of the prefactor (% = 5 x 1073 for a silicon
resonator), and the fact that the superfluid volume has been replaced by the (larger) optical mode
volume. Combined, these two effects lead to an approximate 3 orders of magnitude reduction

compared to the fountain pressure, see Eq. (45)).

9 Comparison with thermo-elastic stress in a crystal

The thermal stress oy, arising from a temperature increase A7 in an isotropic solid of bulk

modulus K and thermal expansion coefficient = & (9¥) is given by:
Oth
AT = 7 49
o i (49)
where for one absorbed photon, AT is given by:
h
AT = 22 (50)

pVe



This yields a thermal stress per photon of

hwaK
= 51
W=y (1)
This can be re-expressed in simpler form as:
hw
Oth =7 Vo (52)

where we have introduced the dimensionless Griineisen parameter v = ap—f. For silicon at low
temperatures, this takes a value of approximately v ~ 0.2 (/01), resulting in a thermal stress
very close to the superfluid fountain pressure (Eq. (45). It is thus primarily the compliance
of the fluid interface, combined with the engineered ability to collect the thermal energy and
operate near the optimal regime (27 ~ 1 which is responsible for the ultralow threshold ob-
served here, and not a fundamentally stronger nature of the fountain pressure force in superfluid
helium, making these results broadly applicable to photothermally- and electrothermally-driven

systems.
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