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Engineering error correcting 
dynamics in nanomechanical 
systems
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Timothy M. F. Hirsch , Warwick P. Bowen * & Glen I. Harris 

Nanomechanical oscillators are an alternative platform for computation in harsh environments. 
However, external perturbations arising from such environments may hinder information processing 
by introducing errors into the computing system. Here, we simulate the dynamics of three coupled 
Duffing oscillators whose multiple equilibrium states can be used for information processing and 
storage. Our analysis reveals that, within experimentally relevant parameters, error correcting 
dynamics can emerge, wherein the system’s state is robust against random external impulses. We find 
that oscillators in this configuration have several surprising and attractive features, including dynamic 
isolation of resonators exposed to extreme impulses and the ability to correct simultaneous errors.

Nanomechanical systems comprise mechanical elements which are sub-micron scale in at least one dimension1,2. 
These systems are increasingly being studied for a number of applications in sensing3–5, as well as for their ability 
to serve as an alternative platform for computation6. In the context of computing, nanomechanical oscillators are 
used to encode information in their mechanical motion7–14, analogous to the role of electrical charge encoding 
information within semiconductor devices. Nanomechanical oscillators are advantageous for this application 
due to their readily accessible nonlinear responses and controllable oscillation properties15.

Compared to conventional semiconductor based computers, nanomechanical computers promise more 
efficient operation and longer lifespans in harsh environments, such as medical facilities, nuclear power plants, 
and outer space2,8,9,13,16,17. However, despite their robustness in harsh environments, nanomechanical logic 
elements remain vulnerable to transient errors arising from thermal effects, electromagnetic pulses, ionising 
radiation, or mechanical shock18. These types of transient bit-errors, which also occur frequently in conventional 
computers19, are often referred to as single-event upsets (SEUs)20,21. For nanomechanical logic, SEUs originate 
from an instantaneous impulse on the mechanical oscillator that is sufficiently large to shift the oscillator from one 
logical state to the other. In conventional computing systems, a common technique to mitigate the effects of SEUs 
is to use majority voting logic22. While there are many proposals and demonstrations of nanomechanical logic 
gates and memories in the literature7–14, to date, no scheme exists to perform error correction in nanomechanical 
systems without first converting the information into the electrical domain.

A direct mechanical error correction scheme could be designed to leverage the collective behaviour of 
networks of nonlinear oscillators, such as those found in nanomechanical computing systems. These systems 
can often exhibit intricate emergent phenomena that cannot be predicted by extrapolating the behaviours of 
individual oscillators. For example, a network of unsynchronized oscillators will spontaneously synchronise once 
their coupling strength exceeds a critical threshold23. Such networks can also be designed to display robustness 
against noise, ensuring that local perturbations rarely alter the steady-state of the overall system24,25. An improved 
understanding of these behaviors has supported numerous applications in conventional information processing 
and communication, including algorithms for broadband network sharing26, enhanced cybersecurity27 and 
optical metrology28.

Inspired by these developments, in this work, we explore the potential to perform autonomous 3-bit majority 
voting error correction via a simple system of three all-to-all coupled nonlinear oscillators. Specifically, we 
study a system of oscillators with third-order nonlinearity, the dominant form of nonlinearity for many physical 
oscillators1, which is exposed to incident ionising radiation. We refer to the oscillators as Duffing oscillators and 
depict a number of their experimental implementations in Fig 1a. The dynamics of large networks of nonlinear 
oscillators in the presence of perturbations have been well documented under various names, including basin 
stability29–31, noise-induced bifurcations32,33, phase transitions in stochastic systems34,35. Here, we show that 
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useful information processing can occur even with small systems of nonlinear oscillators with experimentally 
accessible parameters.

Specifically, our proposed system autonomously returns to its initial state after a perturbation, differentiating 
it from traditional majority-vote error correction schemes by operating without additional comparator 
circuitry, showing enhanced performance under extreme perturbations, and correcting simultaneous errors 
probabilistically. Indeed, a computational search over the parameter space reveals a wide region where collective 
error-correcting dynamics emerge. The realisation of an error-correcting phase for third-order nonlinear 
oscillators offers a novel approach to addressing SEUs, paving the way for fault-tolerant nanomechanical 
computing.

Methods and results
The Duffing oscillator under study in this work is described by the following equation1:

where, for a mechanical oscillator, x is the displacement, m the mass, Ŵ the dissipation, ω0 the resonant frequency, 
α the strength of nonlinearity and F the amplitude of the sinusoidal drive provided to the system at frequency 
ω . At certain drive amplitudes and frequencies, the steady-state dynamics exhibit bistability1, with one stable 
solution corresponding to high displacement and the other corresponding to low displacement7. This bistability 
is shown in Fig. 1b for the case of spring hardening ( α >0), wherein the oscillation amplitude depends on the 
history of the drive frequency (left) and amplitude (right).

We use numerical methods to simulate the responses of Duffing oscillators to incident impulses from 
ionising radiation. Collision events are modelled as instantaneous changes to the momentum of the oscillators. 
By convention, we use high (low) displacements to represent binary ‘1’ (‘0’) signals (red/blue shaded regions in 
Fig. 1b), as proposed14 and recently demonstrated7 in nanomechanical logic gate implementations. Figure 1c 
illustrates the time dynamics of a single Duffing oscillator based on Eq. (1), with an impulse introduced at the 
time indicated by the dashed line. The momentum imparted on the oscillator by the impulse is denoted �p , which 
is introduced as a change in oscillator velocity in between simulation timesteps. The oscillator is initially prepared 
in a ‘0’ state but the impulse causes it to latch onto the ‘1’ state, which corresponds to an erroneous bit-flip.

Within a 3-bit majority voting algorithm, each bit is replicated three times; if one bit is affected by a SEU, then 
the algorithm corrects this error by assuming that the majority state of the 3 bits is correct. This is traditionally 
achieved through bit post-processing with a logic circuit. We propose an equivalent architecture that consists 
of three identical, equally forced, Duffing oscillators that are all linearly coupled (see Fig. 2a). Each individual 
oscillator is driven into the bistable region and represents a single logical bit. The coupling provides an additional 
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Figure 1.   (a) Schematic of a single Duffing oscillator and its applications in various computing platforms. 
Images of a nanomechanical circuit, superconducting circuit, and optical circuit reproduced from Refs.8,36,37, 
respectively. (b) Frequency/drive response of Duffing oscillator. Solid (dashed) lines represent stable (unstable) 
solutions of the Duffing equation. Jumps between the stable solutions are labelled with up and down arrows. (c) 
Time dynamics of a driven, damped Duffing oscillator subject to an SEU. The parameters of the oscillator are 
given by: m = 10−12 kg, Ŵ = 105 s−1 , ω0 = 106 s−1 , α = 3× 1022 m−2s−2 , ω = 1.152× 106 s−1 , F = 5× 10−7 
N, �p = 6× 10−12 kg.m.s−1 . The oscillator is first initialised in the ‘0’ state, but then subject to an SEU which 
leads to a bit flip. The displacement is expressed in arbitrary units, such that the magnitude of a ‘1’ signal is 1.
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avenue for driving that can be either large or small depending on the amplitude of the neighbouring oscillators. 
The equations of motion of these coupled oscillators are:

where β is the coupling constant between oscillators, and x1 , x2 , and x3 represent the displacement of oscillators 
1, 2 and 3, respectively.

To determine the collective behaviour of the proposed error correcting network, we simulate its time dynam-
ics for a range of different parameters and initial conditions. We search for emergent phases where the collective 
dynamics exhibit only two steady states (‘111’ and ‘000’), irrespective of when impulses occur and insensitive to 
small deviations in system parameters. We find that for specific sets of parameters, error correcting behaviour 
is possible. One example is shown in Fig. 2b, where each oscillator is initially prepared in the ‘0’ state, before 
oscillator 3 is subjected to an impulse of the same magnitude as that in Fig. 1c (dashed line). We see that the 
impulse causes the amplitude of oscillator 3 to temporarily reach the ‘1’ state, however, it does not latch to this 
state. After an equilibration period, all oscillators settle back into the ‘0’ state. Similar error correcting dynamics 
are seen when the oscillators are initialised in the ’1’ states (see Supplementary Information).

Next, we repeat these simulations varying the drive frequency, drive amplitude and time of impulse. We find 
the behaviour of the coupled system can be categorized into four distinct phases (see Fig. 2c). When the drive is 
strong and near resonance, all oscillators evolve into their ‘1’ states. Conversely, when the oscillators are provided 
with weak drives, or are driven far away from resonance, they always evolve into their ‘0’ states. We term these 
two regions ‘1’ bias and ‘0’ bias, respectively. In between the two bias regions, the oscillators can exhibit bistability 
and can be initialized in either their collective ‘1’ or ‘0’ states, depending on the history of the applied forcing. We 
call this the initialise region. It should be noted that operating in this region does not guarantee error correction. 
We find that, for some parameters and impulse timings, it is possible for a single impulse to cause the system to 
transition between collective states. However, there remains a subspace that is guaranteed to correct all single 
impulses, regardless of when the impulse occurs. This region is labelled error correction in Fig. 2c (refer to the 
Supplementary Information for additional details).

For sufficiently high coupling rates, the error correction region can be made to be large, enabling stable 
operation. For instance, Fig. 2c was generated with a coupling rate equal to twice the intrinsic dissipation (i.e. 
β/ω0 = 2Ŵ ). Here, near the centre of the error correction region, error correction is maintained even with large 
deviations in drive force. For instance, at ω/ω0 = 1.152 , error correction is predicted to occur for drive forces in 
the range 4.3Fcrit ≤ F ≤ 6.8Fcrit . The size of the error correction region decreases with decreasing coupling rate, 
eventually disappearing altogether in the weak-coupling regime where β/ω0 < Ŵ . The chosen numerical param-
eters are experimentally achievable, and based on previous demonstrations using silicon nitride nanomechanical 
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0x2 + αx32 =

F

m
cos(ωt)+ βx1 + βx3
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Figure 2.   (a) Schematic of mechanical error correction system, composed of three coupled Duffing oscillators. 
This functions as a majority voting system and can correct for single SEUs. (b) Time dynamics of error 
correction device. The coupled oscillators are initialised in their ‘0’ states and after 4.7 periods of oscillation, an 
impulse is applied to the third oscillator. The third oscillator temporarily transitions into its ‘1’ state, but quickly 
equilibrates back. The parameters of the oscillator are given by: m = 10−12 kg, Ŵ = 105 s−1 , ω0 = 106 s−1 , 
α = 3× 1022 m−2.s−2 , ω = 1.152× 106 s−1 , F = 1.048× 10−6 N, �p = 6× 10−12 kg.m.s−1 , β = 2× 1011 s−2 . 
(c) Phase map of error correction device. The map is divided into four main regions, ‘1’ bias, ‘0’ bias, initialise 
and error correction. This map is produced using the same parameters as (b). The y-axis is normalised by Fcrit , 
which we define as the minimum drive force required to sustain a ‘111’ state. Here, Fcrit = 1.68× 10−7 N at 
ω = 8.3× 105 s−1.
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oscillators on a silicon chip7. These oscillators can be made with a low intrinsic dissipation rate Ŵ , such that the 
condition β/ω0 = 2Ŵ can readily be achieved with acoustic tunnel junctions joining the oscillators38. A similar 
parameter regime can also be achieved with silicon nitride strings39,40, where string resonators can be strongly 
coupled to each other via coupling beams41. In practice, operating devices too close to the ‘0 bias’ region boundary 
is likely to give rise to instabilities, especially when environmental factors are considered (temperature change, 
charge build up, etc.). Experimentally, we anticipate that utilising a temperature control system and operating 
well within the error correction region will improve the stability of device performance.

The error correction of all single impulses can be further understood by considering the instantaneous 
energy of the system as a function of time. Figure 3a shows that the energy of the perturbed oscillator (purple 
line) increases rapidly due to the impulse, as expected. The two unperturbed oscillators then extract the excess 
energy and dissipate it to the environment, bringing the perturbed oscillator back into its original state. As the 
impulse amplitude is increased, the ability of the unperturbed oscillators to dissipate the excess energy is reduced, 
causing failures in error correction. This is shown in Fig. 3b where impulses that cause the system momentum 
to exceed p > 1.42pmax,‘1’ result in failures of error correction (where pmax,‘1’ is the maximum momentum of 
the equilibrated ‘1’ state).

Unexpectedly, we find that the system also exhibits error correction of extremely large impulses (i.e. impulse 
energy large enough to transition all oscillators into the error state). This occurs due to an effect we call dynamic 
decoupling. An extremely large impulse will temporarily increase the amplitude of the perturbed oscillator, 
nonlinearly shifting its oscillation frequency away from the remaining oscillators. This decouples the perturbed 
oscillator from the others and precludes efficient energy exchange between them. The perturbed oscillator then 
dissipates the excess energy to the environment before reducing its amplitude and re-establishing coupling. The 
dashed line in Fig 3a indicates the approximate energy threshold above which dynamic decoupling starts to occur, 
defined as the point when the Duffing induced frequency shift exceeds the coupling rate between oscillators β/ω0 
(See Supplemental Information). Indeed, dynamic decoupling becomes more pronounced for larger impulse 
amplitudes. As a result, for our set of parameters, there are two regimes that allow perfect error correction of 
SEUs; impulse amplitudes in the range 0 < �p/pmax,‘1’ < 1.42 and those with �p/pmax,‘1’ > 8.5 . This is shown 
in Fig. 3b where the failure probability is zero for both small (main figure) and large (inset) impulse amplitudes. 
We note that the failure probability shows periodic behaviour within the range 1.42 < �p/pmax,‘1’ < 8.5 . The 
origins of this periodicity remain a subject of further research.

The error correction protocol can perfectly correct single impulses, but we expect it to be susceptible to 
multiple simultaneous impulses. To explore this, we run simulations in which each oscillator has a fixed prob-
ability, Pkick , of experiencing an impulse, i.e. a momentum kick, at a given time. Consequently, there is a finite 
probability of two or all three oscillators experiencing impulses simultaneously. We define an event as the occur-
rence of one or more impulses. If an event occurs and causes an error, then it is recorded and the simulation is 
reinitialised (see Supplementary Information for details). This allows one to determine the probability of failure 
for a given event probability. When this process is repeated for a range of event probabilities, the probability of 
failure (normalised by the event probability itself) is obtained.

We compare to equivalent simulations on a single oscillator (red in Fig. 4). The probability of failure per event 
for the single oscillator is constant at approximately 91%. The 9% success rate can be attributed to a portion of 
impulses opposing the momentum of the oscillator and therefore having a reduced effect.

The performance of the system was investigated with respect to an ideal majority voting scheme. Three way 
majority voting logic should correct all single impulses, but fail if two or more oscillators experience them. One 
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Figure 3.   Single event upset on a 3-bit majority system. (a) Instantaneous energy of coupled system. Oscillators 
1 and 2 are represented by the yellow trajectory and oscillator 3 is represented by the purple trajectory. The 
phase of the impulse relative to motion of the oscillator is indicated by the diagram on the top right corner of 
the figure. Since the amplitude of oscillator 3 is momentarily increased, its resonance frequency is up-shifted 
and it decouples from the other oscillators. The energy required for this to occur is indicated by a horizontal 
dashed line, and the region of decoupling is represented by grey shading. (b) Probability of error-correction 
failure (i.e. error occurs from impulse) with increasing amplitude of impulse. The horizontal axis is normalised 
to the maximum momentum of the oscillator when in the ‘1’ state. Inset: probability of error-correction failure 
for a larger range of impulse amplitudes. Grey region is the range of the main figure. Note that at high impulse 
amplitudes (i.e. �p/pmax,‘1’ > 8.5 ) the error-correction is always successful.
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can predict the theoretical failure rate, so defined, from a Binomial distribution for a given impulse probability 
(see Supplementary Information). When comparing the three oscillator system (blue dots) to the theoretical 
performance of a conventional majority voting scheme (blue dashed line), Fig. 4 shows that the coupled system 
surprisingly exhibits superior error-correcting performance.

Interestingly, the coupled system corrects all single impulses and 65% of the double impulses. We believe 
that the ability of the coupled oscillators to correct a double impulse is related to non-trivial transients of the 
system. Quite generally, as the oscillator transitions between its two stable states, it must re-phase its oscillation 
with respect to the external drive. In this situation, the displacement from an impulse may not have the cor-
rect phase to enable latching onto the stable state, causing the impulse energy to be extracted from the system 
through dissipation and the external drive. In some sense, the state of each oscillator is encoded twice in the 
dynamics, once in its amplitude and again in its phase. This creates additional redundancy of the logical bit, 
enabling double errors to be corrected.

In the modelling presented in this work, we have assumed the three oscillators in our design (see Fig. 2a) 
share identical physical parameters. However, in practice, minor fabrication differences can give rise to parameter 
mismatches in our devices and potentially impact error correction performance. To preserve performance, the 
oscillator resonant frequencies can be actively tuned to correct for any mismatch1,42, and the coupling between 
oscillators can be tightly controlled through design and engineering38. Furthermore, we have found that mis-
matches in oscillator dissipations ( Ŵ ) do not adversely affect the error correction region (refer to Supplementary 
Information for details). As a result, we anticipate the proposed design to be experimentally achievable.

Conclusion
In this work, we have explored the emergence of an error correcting phase in systems of coupled nonlinear oscil-
lators. Using numerical simulations, we identify four distinct regions of behaviour in parameter space. We show 
that one of these regions enables autonomous error-correction from randomly occurring impulses, removing the 
need for additional logic operations to perform a majority-vote. Interestingly, error-correction is greatly enhanced 
for large impulses due to a dynamic decoupling of the perturbed oscillator, enabling error correction for impulses 
that are over ten times larger than the momentum of the ‘1’ state. Furthermore, the system is capable of correcting 
two simultaneous errors 65% of the time due to transient effects that de-phase the oscillators with respect to the 
drive. Our work shows that simple, small systems of coupled nonlinear oscillators with experimentally achievable 
parameters can be harnessed to enable autonomous error correction in nanomechanical computing architectures.

This work could be implemented in architectures where controllable strong resonator to resonator coupling 
has been demonstrated, such as silicon nitride membranes coupled via tunnel junctions38 or coupled nitride 
strings41. Another path forwards could be through exploring alternative coupling geometries within larger net-
works of oscillators to correct for a greater proportion of simultaneous errors. For example, ring-like networks 
of oscillators have been shown to exhibit exotic states of synchronization43, with applications in system stability, 
resilience and error correction. We envision that future work could integrate different coupling architectures 
and network sizes to enhance majority voting efficacy.

Figure 4.   Simulated probability of system failure per event as a function of event probability per time interval. 
Red and blue dots represent the simulation results of single and coupled systems, respectively. Red and blue 
dashed lines represent the predicted model for single oscillator and majority vote of three independent 
oscillators, respectively. Red and blue solid lines represent the corrected model for single oscillator and coupled 
oscillators, respectively. Simulation parameters are the same as in Fig. 2.
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Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary 
Materials. Additional simulation files and scripts are accessible upon request from W.P.B.
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