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Abstract

Error correction is essential for modern computing systems, enabling information to be processed accurately even in
the presence of noise. Here, we demonstrate a new approach which exploits an error correcting phase that emerges in a
system of three coupled nonlinear resonators. Within this phase, perturbed memory states are autonomously restored
via the collective dynamics of the nonlinear network. We implement our scheme using a network of nanomechanical
resonators. Nanomechanical systems are an attractive platform for low energy computing, but purely mechanical error
correction has not been previously demonstrated. We experimentally show that the error correcting phase provides a
35 times reduction in the rate of errors, and allows robust error correction over a wide range of system parameters.
These results highlight how emergent nonlinear dynamics can be harnessed for practical applications, paving the way

towards error-resilient nanomechanical computing.

Introduction

Emergent collective dynamics — complex, often un-
expected, macroscopic behaviours that arise from local
interactions — are a defining feature of driven, dissipa-
tive, coupled nonlinear systems. They can be observed
in both engineered systems and nature, with examples in-
cluding the synchronisation of coupled oscillators [1, 2],
phase transitions in spin systems [3], oscillatory chemi-
cal reactions [4], and pattern formations within vegetation
growth [5]. These systems highlight how the complex in-
terplay of energy gain, loss, and nonlinearity can give rise
to rich dynamical behavior when far from equilibrium, of-
ten with properties not apparent from the behavior of in-
dividual components alone. An improved understanding
of such dynamics has inspired several technological inno-
vations, including the use of ferromagnetic interactions to
stabilise bit storage within magnetic storage devices [6],
and coherent Ising machines that exploit nonlinear opti-
cal interactions to realise collective optimisation [7].

Recent advances in nanofabrication have also enabled
the study of dissipative, nonlinear dynamics in nanome-
chanical systems [8-10]. For example, it has been demon-
strated that a system of eight ring-coupled nonlinear
nanomechanical resonators exhibits exotic states of syn-
chronisation and symmetry breaking [11]. These systems
exhibit readily accessible nonlinear responses and control-
lable oscillation properties, rendering them ideal for stud-
ies into nonlinear phenomena, as well as for practical ap-
plications [12-19]. In particular, nanomechanical systems
are a versatile and attractive platform for performing com-

*Email: tina.jin@uq.edu.au
TEmail: w.bowen@uq.edu.au

putation [20].

In a mechanical computer, binary information can be
encoded in the amplitude and or phase of the vibrations
of nanomechanical nonlinear resonators [21], playing a
role analogous to electrical charges in semiconductor de-
vices. Compared to electronics, nanomechanical compo-
nents promise longer lifespans in harsh environments and
ultra-low power consumption, in principle approaching the
Landauer limit [22-24]. This is particularly desirable in
the current computing landscape, with artificial intelli-
gence models consuming increasing amounts of energy for
both training and interfacing [25].

While significant advances have been made towards real-
isation of a nanomechanical computer [26-37], purely me-
chanical error correction (which operates entirely in the
mechanical domain without converting information into
electrical signals) has yet to be demonstrated. It has re-
cently been proposed that mechanical error correction can
be achieved by harnessing an error correcting phase that
emerges from the collective dynamics of coupled nonlinear
resonators [38]. Here, we experimentally demonstrate the
spontaneous emergence of this error correcting phase in
a system of three tunable nonlinear nanomechanical res-
onators. Within the phase, perturbed memory states are
autonomously restored to their correct values and perfor-
mance is robust against experimental imperfections. We
observe that the error correcting phase reduces errors by
a factor of 35. Our work shows how emergent nonlin-
ear dynamics can be harnessed for practical applications,
opening a path towards scalable, error-resilient nanome-
chanical computing.
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Results

The nonlinear resonators used in this work are Duffing res-
onators, which are bistable under certain drive strengths
and frequencies, exhibiting two steady state oscillation
amplitudes [10,39], as illustrated in Fig. la. Above a crit-
ical threshold, F.., the resonator will be driven into one
of two stable limit cycles. Binary memory can be encoded
in the oscillation amplitude [24,30], with high amplitude
representing a binary ‘1’ and low amplitude representing
a binary ‘0’. If exposed to an impulse, henceforth referred
to as a ‘kick’, the resonator can dynamically transition
from one stable branch to the other, resulting in a bit
flip known as a single event upset. The error correcting
system proposed in Ref. [38] overcomes this by exploiting
the nonlinear response of Duffing resonators when kicked.
This results in a complex interaction between the coupled
resonators and the external drive, enabling the kicked res-
onator to more rapidly dissipate its excess energy and au-
tomatically return to its original state.

Architecture

To experimentally test this prediction, we devised a phys-
ical architecture consisting of three circular membrane
resonators as shown in the optical image in Fig. 1b
(for fabrication details, see Methods). The resonators
are formed by underetching highly stressed silicon nitride
membranes, and exhibit drum-like resonances at a nom-
inal resonant frequency (o/27) of 4 MHz with quality
factors (Q = Q/T") of approximately 26,000, where I'/2x
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is the linewidth. Gold electrodes deposited at the centre
of each resonator allow the devices to be capacitively ac-
tuated [24]. The resonators are acoustically connected in
a ring via acoustic tunnel junctions [40], which permit the
evanescent transfer of mechanical energy. The mechanical
motion of each device is detected optically [24,40,41], as
shown in Fig. 1b. Laser light is focused onto the mem-
brane via a lensed optical fiber positioned above it. In-
cident light is reflected by the membrane, with its phase
dependent on the position of the membrane. The ampli-
tude of the motion of the resonator can then be measured
using a heterodyne interferometer (see Methods).

The resonant frequencies of the resonators were found
to vary by up to 0.5% of Q¢ (~ 20 kHz) due to minor fabri-
cation differences. Because the linewidth (I'/27 ~ 175 Hz)
is significantly less than this spread, the resonators are na-
tively uncoupled, as illustrated in the schematic spectrum
in Fig. 1b. DC voltages can be applied to the electrodes
to tune the frequencies via the electrostatic softening ef-
fect [10,42]. This allows us to induce strong coupling be-
tween the resonators and create a system of three all-to-all
coupled resonators. Toggling the DC voltages enables us
to examine both isolated resonators and the coupled sys-
tem using the one physical setup.

Single Resonator

To understand the dynamics of a single upset event, we
first characterise the effect of kicks on a single unprotected
nanomechanical memory bit, before comparing to experi-
ments on the coupled system.
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Figure 1: Concept and implementation of a single nanomechanical memory unit. a Drive response of a
Duffing resonator [10,24]. At a sufficiently large drive strength, multiple solutions of the Duffing equation emerge, with
the stable and unstable solutions represented by solid and dashed lines, respectively. Blue and red regions represent
‘0’ and ‘1’ logic bits, respectively. b Experimental setup for a system of three resonators. Optical heterodyne
interferometry is used to measure the amplitude of the resonator. The laser light first passes through an acousto-optic
modulator (AOM), which generates a frequency upshifted (77 MHz) local oscillator (LO) beam (orange), and a non-
diffracted probe beam (red). The probe beam is directed to the vacuum chamber via a fiber optic cable. A lensed fiber
focuses the light onto the membrane and collects the reflected light. An optical microscope image of the fabricated
device is shown in the bottom right. An illustrated mechanical power spectrum of the system is shown in the bottom
left, showing three distinct resonances, corresponding to the fundamental mode of each of the uncoupled resonators.



To study an isolated resonator, we drive one resonator
— uncoupled to the others — to reach the bistable regime
using a DC signal and an AC signal near its resonant fre-
quency (see Methods). Simultaneously, we optically mea-
sure the resonator’s response, as illustrated in Fig. 1b.
We apply kicks to the resonator to induce bit flip errors
by superimposing a short sinusoidal pulse (at the drive
frequency) on top of the existing drive (see Supplemen-
tary Information). The kick signal applies a large force
on the resonator (Fiick/Ferit &~ 125) over a short period of
time (Tiick &~ 12 ps), such that it is ‘instantaneous’ com-
pared to the characteristic response time of the resonators
(1 = 27/T = 6 ms). Indeed, the finite kick duration rep-
resents less than 0.2% of the characteristic response time
of the resonator (Tyick /7T < 0.002), such that it accurately
models a single event upset [43].

Fig. 2a shows an example measured time trace of
the peak-to-peak oscillation amplitude of the isolated res-
onator, to which kicks are applied every 0.5 seconds. We
observe that four of the thirteen kicks give rise to sudden
and sustained transitions between the ‘1’ (high amplitude)
and the ‘0’ (low amplitude) states. These are bit flip er-
rors, which would result in information loss or corruption
in a large-scale nanomechanical computer. The effect of
kicks on the resonator varies because of the randomised
relative phase between kicks and resonator motion, lead-
ing some kicks to oppose the momentum of the resonator
at the time of incidence and others to add to it [38]. An
error correcting system must be able to prevent bit flip
errors regardless of the kick timing.

To investigate the dynamics of bit flip errors, we track
the trajectory of the resonator in phase space in a frame
rotating with the input sinusoidal drive during an upset
event. This is achieved by mixing down the recorded pho-
tocurrent with two sinusoids out of phase by 7/2 (see
Methods). With sufficient signal to noise ratio, we can ex-
tract the amplitude and phase of the resonator in a time
shorter than the mechanical period (T' = 27/€), enabling
us to track not just the timing of the errors (Fig. 2a), but
also the precise evolution of the resonator in phase space as
the kick forces a transition from one limit cycle to another.
The resultant phase trajectories are shown in Fig. 2b. In
the rotating frame, the two stable limit cycles manifest as
single points in phase space.

Fig. 2b shows the dynamics of a ‘0’ to ‘1’ bit flip error,
recorded over 2.5 ms. Here, the resonator is initially in the
‘0’ state (blue circle). The impulse from the kick causes a
sharp increase in peak-to-peak amplitude, dislodging the
resonator from the stable ‘0’ limit cycle. The resonator
does not recover, and transitions into the ‘1’ state (red
circle). Similarly, Fig. 2¢ shows the phase space trajectory
of a ‘1’ to ‘0’ bit flip error, where the same progression
occurs but with the initial and final states interchanged.

To validate the observed error trajectories, we simulate
the dynamics by numerically solving the driven, damped
Duffing equation (see Methods). The large difference be-
tween decay and oscillation timescales at our experimental
quality factor made accurate simulations difficult. Instead,
the simulations were performed using a lower quality fac-
tor (@ = 10). This is justified since the evolution of the
system is governed primarily by the position and momen-

tum envelopes, rather than the fast oscillation. We adjust
the timing of the kick to mimic the phase-angle observed
in experiment. The simulation results, in an equivalent
rotating frame, are shown in the lower panels of Fig. 2b
and 2c. We observe strong qualitative agreement with ex-
periment, with scaled coordinates and quadratures.

Coupled Resonators

To now test the error correction ability of three coupled
resonators, we apply DC voltages to bring the disparate
resonant frequencies together. Figure 3a shows the reso-
nant frequency of the resonator with the highest natural
frequency (4.143 MHz) as DC voltages are applied. As
the DC voltage is progressively increased, the resonator’s
resonant frequency decreases. As it crosses the natural fre-
quencies of the other two resonators (4.141 MHz and 4.132
MHz), we observe clear anti-crossings (see also Fig. 3a
inset), evidencing strong coupling. The simulated power
spectrum shown in the background shows excellent agree-
ment with experiment (see Methods).

By applying independent DC voltages to the two higher
frequency resonators, we tune them to be degenerate with
the lowest frequency resonator, which is subject to a com-
parably smaller DC signal. This gives rise to a system
of three all-to-all coupled resonators, as illustrated in Fig.
3b. In this system, the three fundamental drum modes
hybridise to form three new normal modes (see Supple-
mentary Information). The lowest frequency normal mode
exhibits symmetric, equal-amplitude, in-phase vibrations
across the three resonators. It thus forms a natural mode
for storing three identical memory bits (‘000’ or ‘111°).
Importantly, the error correction should not be thought
of simply in terms of a single vibrational normal mode.
When a kick occurs, the Duffing nonlinearity of the kicked
resonator causes its frequency to shift. This alters the nor-
mal modes [38] of the system, and is essential for the error
correcting process. To drive the mode, we actuate all three
resonators near resonance with a synchronised amplitude
and phase. Henceforth, we measure the dynamics of one
resonator, referred to as the read out resonator. We refer
to the remaining resonators as the ancilla resonators.

For comparison purposes, we apply the same experimen-
tal protocol used for the single resonator to induce kicks
to the coupled system. That is, the kicks have the same
magnitude as previous tests and they are only applied to
the read out resonator. Two of the resultant experimental
time traces are shown in Fig. 4a and 4b, with the coupled
system initialised in the ‘0’ and ‘1’ state, respectively. In
both traces, kicks can cause the amplitude of the read
out resonator to be momentarily upset, but the resonator
consistently returns to its original logical state.

The top panels of Fig. 4c and 4d show the phase space
trajectories for a kick from each of the traces, displayed
over 5 ms. We observe that immediately after the kick,
the read out resonator’s trajectory sharply deviates from
the ‘0’/‘1’ steady state limit cycle and then ‘loops around’
before returning to its original state. Qualitatively sim-
ilar behaviour is observed in the simulated response (see
Methods for simulation details), shown in the lower panels
of Fig. 4c and 4d.
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Figure 2: Observed bit flip errors from a single, isolated resonator. a An amplitude-time measurement of the
isolated resonator. Black arrows indicate the timing of kicks. The background is shaded (blue/red) to indicate the
regions where the oscillation amplitude is considered to be in the ‘0’/‘1’ state. b/c Experimental (top) and simulated
(bottom) phase trajectories, respectively showing example ‘0’ to ‘1’ and ‘1’ to ‘0’ bit flip dynamics. Red and blue circles
are respectively used to illustrate the resonator’s ‘1’ and ‘0’ states. The axes are normalised by the critical amplitude,
Xerit & 4.0 nm, which is the peak-to-peak amplitude of the resonator when it first exhibits nonlinear behaviour. The
experimental traces were measured over 3 ms, and the theoretical traces simulated over 10 ps (simulation details

provided in Methods).
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Figure 3: Mechanism and setup for resonator coupling. a Power spectrum of the highest frequency resonator
with varying applied DC voltage. Here, the read out resonator is driven with AC and DC voltages, while the two
other resonators are not driven. The theoretical power spectrum is plotted in the background (see Methods), with the
experimental data (white dots) overlaid. White dashed lines are plotted to indicate anti-crossings in the spectrum at
the frequencies of the two other resonators. b Experimental setup for all-to-all coupling. Independent DC voltages
are applied to ancilla resonators 1 and 2 to create a system of three, all-to-all coupled resonators. The spectrum of
the system is shown in the lower illustration, showing three overlapping resonances.

Notably, the error correction mechanism is not simply
due to the increased effective mass and characteristic en-
ergy (and therefore resistance to kicks) of the three res-
onator normal mode. The error correction achieved by the
system only arises due to a complex interaction between
the coupled resonators and with the external drive [38].
When the amplitude of a Duffing resonator is altered, its
nonlinear nature causes its frequency to shift. The kick to
the read out resonator thus detunes it from the ancilla res-
onators, such that it is dynamically decoupled and unable
to exchange energy efficiently. This frequency shift, com-
bined with the sudden changes in amplitude and velocity,
also causes the read out resonator to rephase its oscilla-
tion with respect to the external drive; with the resulting
transfer of energy favoring a return to the initial state.

To verify this dynamical behaviour, we simulated the
power flows from the external drive to the read out res-
onator and the intrinsic dissipation with the system ini-
tialised in the ‘0’ and the ‘1’ state, as shown in Fig. 5a and
5b, respectively. Prior to the kick, the external drive pro-
vides enough energy to overcome dissipation and maintain
the oscillation. The kick in Fig. 5a increases the energy of
the resonator, but also changes the relative phase between
the resonator and the drive by more than 7/2, such that
the direction of power flow is reversed. This mechanism
results in energy being removed from the system faster
than would occur via intrinsic losses alone (red curve),
assisting the system in automatically returning to its orig-
inal state. Where the kick reduces the energy of the read
out resonator, as in Fig. 5b, the read out resonator in-
stead gains energy from the external drive via rephasing.

These periods of rephasing manifest as ‘looping’ cycles in
the phase space trajectories, as observed in Fig. 4c and
4d.

To test how significant the dynamic decoupling effect is
in our system, we track the frequency shift of the read out
resonator in response to a kick, as shown in Fig. 5c. We
observe that the applied kick results in an instantaneous
frequency shift of up to 0.5 linewidths, temporarily reduc-
ing the efficiency of energy exchange between resonators.
For even larger kicks, the read out resonator’s frequency
would be shifted by more than a linewidth, causing it
to become fully dynamically decoupled from the ancilla
resonators. In this regime, energy exchange between the
resonators is greatly suppressed, protecting the ancilla res-
onators from the excess energy introduced by the kick, and
allowing the read out resonator to dissipate this energy.
Eventually, the amplitude of the read out resonator would
reduce sufficiently for coupling to be re-established and the
system returns to its initial state. In this way, the error
correction scheme is predicted to be robust even to very
large kicks [38]. We have not experimentally demonstrated
this phenomenon, as we find kicks any larger than those
we have applied herein, exceed the pull-in voltage of our
device, leading to an irreversible collapse of the membrane.
We anticipate that the same experimental protocol could
be applied to devices with larger membrane-substrate sep-
arations to demonstrate full dynamic decoupling.
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Figure 4: Autonomous nanomechanical error correcting memory. a/b Amplitude-time measurement of the
coupled resonators when initialised in their ‘0’ (left) /‘1’ (right) state. Black arrows are used to indicate when the kicks
are applied. ¢/d Experimental (top) and simulated (bottom) error correcting dynamics of three coupled resonators.
Phase space trajectory axes are normalised by the critical amplitude (xcit ~ 4.0 nm). Arrows are used to indicate
the direction of the trajectory. The experimental trajectories are measured over 3 ms, and the simulated trajectories

over 5d ys.
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Figure 5: Error correction mechanism. a/b Power
flow from the external drive to the read out resonator
(black) and the intrinsic dissipation of the read out res-
onator (red), with the system initialised in the ‘0’/‘1’ state.
The direction of the power flow is defined such that pos-
itive values correspond to the read out resonator gaining
energy, and negative values (gray background) indicate a
loss of energy. The x-axis is normalised to dimensionless
units, representing the number of oscillation periods, with
t = 0 being the time of the kick. ¢ The frequency shift of
the read out resonator as a kick is applied at ¢ = 0 ms.
The y-axis represents the shift away from the resonant
frequency of the resonator, in terms of linewidths.

Error Correction Statistics

To quantify the effectiveness of the coupled system at per-
forming error correction, we carry out repeated measure-
ments to determine the probability of ‘0’ to ‘1’ and ‘1’ to
‘0’ errors. These results are benchmarked against analo-
gous experiments on a single resonator. We determine the
‘0" to ‘1" (Po1) and ‘1’ to ‘0’ (Pio) failure probabili-
ties separately as they are not necessarily equal. Indeed,
the probabilities of each type of error are predicted to
vary depending on the frequency and strength of the AC
drive [38]. When the drive is strong or is closer to the
resonant frequency, the system can more easily transition
from low to high amplitude. Under these conditions, the
system will be more prone to ‘0’ to ‘1’ errors. In contrast,
when the drive is weak or far away from resonance, the
system will be more prone to ‘1’ to ‘0’ errors.

A total of 1295 kicks were performed, with the resulting
failure probabilities and 95% confidence intervals shown
in Fig. 6a. (see Supplementary Information for data).
For a single resonator, we observe frequent bit flip errors
and record Pi_, and Py_,; values of 0.35 and 0.15, re-

spectively. The difference between these two failure prob-
abilities are due to the single resonator being driven far
from resonance. In comparison, when operating at the
same condition, the coupled resonators consistently sup-
press both types of errors, with P;_,g and Py_,; values of
0.0065 and 0.0060, respectively.

In total, we calculate the overall failure probability
(Prain) to be 0.22 for the single resonator with a 95% con-
fidence interval of 0.19 - 0.25, and 0.0063 for the coupled
system with a 95% confidence interval of 0.0008 - 0.022.
This corresponds to a 35-fold error rate reduction.

Previous theoretical work suggested that the coupled
system should fully suppress all single event upsets [38].
To explore the source of errors in our experiments, we
extend the simulations in our theoretical work [38] to in-
clude thermal noise as well as parameter mismatch and
cross-talk between the resonators (see Supplementary In-
formation). We find that the system is robust to both ther-
mal noise and parameter mismatch over the range that is
possible in our experiments. On the other hand, our sim-
ulations show that the system is sensitive to cross-talk at
the levels that are experimentally present. This cross-talk
has the effect of simultaneously altering the amplitude,
frequency and phase of the ancilla resonators when the
read out resonator is kicked. At specific kick phases, this
cumulative effect across all resonators causes the observed
errors that would otherwise be corrected. Other environ-
mental factors such as temperature change can cause grad-
ual shifts in resonant frequency and hence result in tran-
sitions between steady states. However, we rule this out
on the basis that our devices are temperature controlled
and we do not observe anomalous windows of bit flips.

Error Correction Map

To validate the prediction of an error correcting phase,
we test the performance of our device at different points
in the parameter space. Given that the error correcting
phase can only exist within the bistable regime, we first
performed forward and backward frequency sweeps at var-
ious drive strengths to determine the extent of this region.
The forward sweep allows us to determine the higher fre-
quency boundary of the Duffing hysteresis, while the back-
ward sweep reveals the lower frequency boundary [10,24].
Our measurements reveal a wedge-shaped bistability re-
gion that shifts towards higher frequencies and covers a
broader range of detunings with increasing drive strength,
as shown in Fig. 6b. This is in good qualitative agree-
ment with our theoretical prediction (see Supplementary
Information).

Within this region, we then measured the response of
the read out resonator to hundreds of randomly phased
kicks at each of nine different detuning and drive strength
operating points (2988 kicks in total, see Supplementary
Information for detailed statistics). We calculate the over-
all probability of failure of the device at each operat-
ing point, shown as color coded data points in Fig. 6b.
We find that the error correcting performance of the cou-
pled device improves with increasing drive force. Notably,
at the center of the bistable region, (AQ/T, F/F..t) =
(3.7,3.9), we record the failure probability to be as low as



0.0020, corresponding to just one bit flip error observed
from a total of 495 applied kicks.

As predicted in theoretical work [38], the error correc-
tion functions over a wide region of drive detunings and
forces within the bistable region, evidencing the robust-
ness of the scheme to parameter drifts. As shown in the
background of Fig. 6b, a nearest-neighbour interpolation
of our data reveals a wide area of low failure probabili-
ties. For instance, at F'/F.i = 3.9, the device supports
error correction over a detuning range of 1.2 linewidths.
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Figure 6: Error correction phase map. a Failure

probability statistics for a single resonator and three cou-
pled resonators, measured at (AQ/T, F/F.) = (3.0,3.2).
Here, AQ is the difference between the drive and the res-
onant frequency, F' is the drive strength and Fi,; is the
critical drive. FPy_,1 and P;_.o respectively denote the ‘0’
to ‘1’ failure probability and the ‘1’ to ‘0’ failure probabil-
ity. Pr; denotes the overall failure probability. The 95%
confidence intervals on the failure probabilities, as deter-
mined via the Clopper-Pearson method [44], are displayed
by the error bars. b Experimental map showing the mean
probability of failure at various drive strengths and de-
tunings. The interpolated background is fainted so as to
not obscure the data points. The boundary of the Duffing
bistability regions are plotted as red and blue dots. Within
the ‘1’/0’ bias region, the resonators can only evolve into
their collective ‘1’ state or their collective ‘0’ state.

Similarly, at AQ/I' = 3.0, the system can perform error
correction over a force range as wide as 0.7 Fiit.

Discussion

This work experimentally demonstrates a new error cor-
rection scheme, reliant on the emergence of an error cor-
recting phase wherein corrupted memory states are au-
tonomously restored via the collective dynamics of three
coupled nonlinear resonators. The approach is versatile
and can be implemented in a broad range of architec-
tures that host nonlinear resonators, such as electrical,
optical [45], superconducting [46] and nanomechanical cir-
cuits [26].

Our work focuses on nanomechanical computing since
it is an approach that promises radiation-robust and ul-
tra low energy consumption, potentially approaching the
Landauer limit [23,24], and because purely nanomechan-
ical error correction has not previously been realised. A
significant advantage of our approach is that the emergent
collective dynamics of the nonlinear system enable pas-
sive, autonomous error correction. This is in contrast to
conventional majority-voting algorithms, which typically
require continuous reading and rewriting of data bits [47].
By showing that nanomechanical error correction is pos-
sible, our work contributes to the realisation of a scalable
nanomechanical processor.

It is interesting to consider the potential causes of er-
rors within a nanomechanical computer. Single-event up-
sets can be induced by electromagnetic pulses, ionising
radiation, or mechanical shock [23]. High energy ionis-
ing particles are of particular concern due to their ability
to penetrate materials, with studies estimating that radi-
ation causes an average of twelve bit flip errors per day
in low-Earth orbit electronics [48]. These errors are typi-
cally triggered by energy depositions in the 10 — 100 keV
range [49], directly comparable to our experiments where
each kick delivers approximately 70 keV of energy to the
resonator (see Supplementary Information). Moreover, it
has been predicted that the dynamic decoupling which
we demonstrate, can enable the correction of even higher
energy impulses [38]. This suggests that the scheme is ca-
pable of correcting impulses typical of a realistic operating
environment.

Beyond error correction, our work highlights that even a
minimal network of three coupled nonlinear resonators can
exhibit complex dynamics. Our platform offers high qual-
ity factors, strong nonlinearity and tunable mechanical
coupling, and can be readily scaled to larger arrays to en-
able systematic studies of driven, dissipative nonlinear sys-
tems [24]. Such systems are known to host rich collective
behaviour, with up to 3V stable states for a system of N
elements [50]. For example, it has been demonstrated that
eight coupled resonators exhibit collective phenomena in-
cluding weak chimeras, decoupled states, travelling waves,
inhomogeneous synchronised states and symmetry break-
ing [11]. They are also important for a range of emerging
technologies such as novel frequency comb states [51,52],
Ising machines for ultra-fast optimisation [7,53, 54], and
energy-efficient neuromorphic computers [55]. The scala-



bility and high nonlinearity of our system make it well-
suited for exploring these sorts of collective nonlinear dy-
namics, both for their rich physics and in pursuit of tech-
nological advances.

Methods

Fabrication

The devices are fabricated from chips diced from a com-
mercially available wafer (Microchemicals GmbH). The
wafer consists of three layers - silicon nitride (50 nm) de-
posited on top of a sacrificial silicon oxide layer (500 nm),
on top of a silicon substrate (500 pm). An additional layer
of gold electrode (45 nm) with a chromium adhesion layer
(5 nm) is patterned by electron-beam lithography, and
then deposited using an electron-beam evaporator. The
silicon nitride membranes are patterned with 1 ym by 1
pm holes using electron-beam lithography and reactive ion
etching using CHF 3, CF4, and Os in the ratio 25:40:4 stan-
dard cubic centimetres per minute. These holes allow for
a top down release process, wherein the silicon oxide is
etched away by immersing the chip in buffered hydroflu-
oric acid [41]. Finally, the chips are dried using a critical
point dryer and wire bonded to printed circuit boards.

Optical read out

We optically measure the response of the read out res-
onator, as shown in Fig. 1b. Heterodyne detection relies
on the interference of a weak probe signal and a strong
frequency shifted field, typically referred to as the local
oscillator (LO). The probe and the LO electric fields, E,
and Ero, respectively be described as:

E, = Apexp (i(w+wro)t + ¢r + ¢s)
Ero = Aroexp (iwt)

Here, A,/Aro is the amplitude of the probe/LO field,
w is the laser frequency, and wyo is the frequency shift
created by the AOM (77 MHz). ¢, represents the phase
change introduced by the motion of the membrane, and
¢, represents the relative phase change between the two
interferometry arms. Since the resonator is driven with
a sinusoidal signal at the resonant frequency, ¢ can be
expressed as ¢ = A, cos(Qpt), where A, is the ampli-
tude of the phase modulation. If A,, = 0, the membrane
has zero motion. If A,, = 27, the membrane’s vibrational
amplitude corresponds to the laser wavelength (780 nm in
this case).

As the probe and the LO fields interfere, the output of
the photocurrent detector produces a signal at the AOM
frequency (iaom), and two sidebands signals (imecn) at
wr,o + Qo and wr,o — Q. To a good approximation, these
signals can be described by:

inom =~ AroAp cos(wrot + ¢r)

imech ~ —2A10A, A, sin(wrot + ¢r) cos(t)
= —Ar0A,A, (sin((wLo + Qo)t + ¢1)
+ sin((wpo — Qo)t + ¢r)

Using the above expressions, one can extract A, by
taking the ratio of the power at the sideband frequency
and the AOM frequency. A,, can then be converted from
radians to meters using the expression = = A4,, - 22

Py nim.

Electrostatic actuation

The gold electrodes deposited on top of the resonators
allow the devices to be actuated capacitively. To a good
approximation, the gold electrode and the substrate forms
a parallel-plate capacitor, with the capacitance (C) given
by C = e9A/(dp + up) [24]. Here, &g is the vaccum per-
mittivity constant, A is the area of the electrode, dy is the
plate separation when the membrane is not deformed, and
ug is the displacement at the center of the resonator. The
capacitive force applied to the membrane, is then given
by:

FC _ E()A 2
2(d0 + UO)2

Since the force scales with the voltage applied squared,
only applying an AC signal near mechanical resonance
(Vac x sin(Qpt)) to the electrode would lead to a response
at 2Qy. In comparison, when simultaneously applying an
AC signal and a DC signal (Vpe) to the electrode, the
above expression can be expanded into:

EOA(VZ%C + 2VacVpe + Vjc)

F~ =
¢ 2(do + up)?

This allows us to actuate motion at g with the response
boosted by a factor of 2Vpe/Vac.

Phase read out

The phase of the mechanical oscillation can be mea-
sured via postprocessing the recorded photocurrent (op-
tical path shown in Fig. 2b). Post processing is required
because the relative phase between the two interferometry
arms is not stabilised, meaning that the phase of the pho-
tocurrent signal randomly drifts over time [56], interfering
with the measurement.

Post processing is performed by passing the photocur-
rent through two RF mixers. The LO ports of the two
mixers were provided with the AOM signal, and a 7/2
phase shifted AOM signal. We refer to the output of the
mixers respectively as ix and iy . Finally, ix and iy pass
through low pass filters so that only the down-converted
signals are measured. The phase drift between the inter-
ferometry arms can then be calculated using the formula:

i
¢r(t) = arctan (Y>
Lx
Knowing ¢r,(t), we can then correct the photocurrent to
remove any phase drift:
ixr = COS(¢L)iX + sin(¢)L)iy
ly: = sin(qf)L)iX - COS(qf)L)Z'y

To track the evolution of the resonator in phase space in
a frame rotating with the input sinusoidal drive, we plot



ixs X sin(Qpt) against iy, X sin(Qpt), where Qp is the
drive frequency. By normalising both axes with zc., we
obtain the experimental results shown in Fig. 2 and Fig.
4.

Simulating resonator dynamics

The single resonator case is described by the ODE for a
driven, damped Duffing oscillator [10,24]:

F
- cos(Qpt)

F4Ti+ Q20+ b =
m

where x is the displacement, m is the mass, I" is the dis-
sipation, {2 is the resonant frequency, « is the nonlinear
Duffing coefficient, and F' is the amplitude of the sinu-
soidal drive provided to the resonator at frequency Qp.
Driven, damped Duffing resonators are known to exhibit
complex dynamics, and there exists no closed form analyt-
ical solution. In this work, to simulate a single mechanical
memory unit and its response to kicks, we numerically
solve the above Duffing equation using an ODE solver.

In Fig. 2b, a single resonator is initialised with ‘0’ and
‘1’ state by providing the ODE solver with a low or high
initial displacement. Kicks are introduced by changing the
resonator’s velocity between simulation timesteps, which
physically corresponds to an instantaneous change in mo-
mentum, denoted as Ap. The parameters used to generate
Fig. 2b are: m = 1072 kg, I’ = 10° s7!, wp = 106 s,
a/m=3x102?m 2572 w=1.152x10%s"1, F = 5x 107"
N, Ap=55x107'2 kg.m.s~ .

Similarly, three all-to-all coupled resonators (equivalent
to the physical system shown in Fig. 3b) can be described
by the below equations of motion:

3
1

. . « F
1+ Tz + Q(Q)acl + ax - cos(Qpt) + Bxa + L3

.. . @ F
g + Dy + Q3o + Eazg - cos(Qpt) + Bxy + P

I3+ Tdg + Q(Q).’Kg + %mg % cos(Qpt) + Bx1 + Lo

where (3 is the coupling constant between resonators, and
r1, T2, and xz represent the displacement of resonators
1, 2 and 3, respectively. The phase trajectories of the
coupled system shown in Fig. 4a and 4b were generated
by solving the above equations, with a kick introduced
on one of the resonators. The parameters used in Fig.
4 are given by: m = 1072 kg, T’ = 10° s71, wy = 10°
s, a/m=3x102 m 2572 w = 1152 x 105 s71,
F=1.048%x10""N, Ap =4x10"2 kgm.s~!, f = 2x 10"

s~2.

Simulating power spectrum of coupled res-
onators

When our fabricated resonators are weakly driven (F <
Feit), they behave as linear resonators. The mechanical
power spectrum of coupled, linear resonators can be ana-
lytically solved as follows.
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The behaviour of our resonators under these conditions
is governed by the below equations:

mi, +mlz + mQ%zl —mpBry —mpPxs = F
mao +mlTy + mQ%mg —mpxry —mpPxrs = Fy

mas +mlTs + mQ§x3 —mpBxy —mpPry = F3

where €223 are the resonant frequencies of the three
resonators. We assume that the above equations have
a solution in the form of x(t) = Aexpivt, where x =
[x1, 22, 23]T are the displacements, A = [A;, Ay, A3]T are
the peak to peak oscillation amplitudes, and v is the oscil-
lation frequency. We also assume that the force is of the
form F(t) = fexp(ivt), with x = [f1, fa, f3]% .

Then, the above three equations can be represented as:

—1”’MA +ilvMA + KA =f

where,
m 0 0
M=|0 m 0
0 0 m
mQ2  —mB —mp
K=|-m38 mQ3 -mp
-mpB —mpB  mQ3

The solution to the above equation is given by:

A(v)

= [-*M +il'vM + K| 'f

The background mechanical power spectrum in Fig. 3a
is generated by solving A (v) while varying 23, which cor-
responds to experimentally applying DC voltages to res-
onator 3.

The following values were used: m = 7.4728 x 10~'2 kg,
/2r = 175 s71, Q1 /27 = 4.131650 x 10° Hz, Q,/27 =
4.141050 x 10% Hz, Q3/27 = 4.142250 x 10° Hz, f; = 0
N, fo =0N, f3 = 1.1121 x 107!' N, 8 = 3459s~!. The
critical force of the above system is given by Fi.iy = 2.172%
1071% N, which is much larger than the value of fs.

Data Availability

All data needed to evaluate the conclusions in the pa-
per are present in the paper and/or the Supplementary
Information. Additional simulation files and scripts are
accessible upon request from W.P.B.
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